The RAM-OP Workflow

The RAM-OP Workflow is summarised in the diagram below.

RAM-OP workflow

The oldr package provides functions to use for all steps after data collection. These functions were developed specifically for the data structure created by the EpiData or the Open Data Kit collection tools. The data structure produced by these collection tools is shown by the dataset testSVY included in the oldr package.

testSVY
#> # A tibble: 192 × 90
#>      ad2   psu    hh    id    d1    d2    d3    d4    d5    f1   f2a   f2b   f2c
#>    <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1     1   201     1     1     1    67     2     5     2     3     2     1     1
#>  2     1   201     2     1     1    74     1     2     2     3     2     1     1
#>  3     1   201     3     1     1    60     1     2     2     2     2     2     2
#>  4     1   201     3     2     1    60     2     2     2     3     2     2     1
#>  5     1   201     4     1     1    85     2     5     2     3     2     1     1
#>  6     1   201     5     1     2    86     1     5     1     4     2     1     1
#>  7     1   201     6     1     1    80     1     5     2     3     2     1     1
#>  8     1   201     6     2     1    60     2     5     2     3     2     2     1
#>  9     1   201     7     1     1    62     1     2     2     2     2     1     1
#> 10     1   201     8     1     1    72     2     5     2     2     2     1     1
#> # ℹ 182 more rows
#> # ℹ 77 more variables: f2d <int>, f2e <int>, f2f <int>, f2g <int>, f2h <int>,
#> #   f2i <int>, f2j <int>, f2k <int>, f2l <int>, f2m <int>, f2n <int>,
#> #   f2o <int>, f2p <int>, f2q <int>, f2r <int>, f2s <int>, f3 <int>, f4 <int>,
#> #   f5 <int>, f6 <int>, f7 <int>, a1 <int>, a2 <int>, a3 <int>, a4 <int>,
#> #   a5 <int>, a6 <int>, a7 <int>, a8 <int>, k6a <int>, k6b <int>, k6c <int>,
#> #   k6d <int>, k6e <int>, k6f <int>, ds1 <int>, ds2 <int>, ds3 <int>, …

Processing and recoding data

Once RAM-OP data is collected, it will need to be processed and recoded based on the definitions of the various indicators included in RAM-OP. The oldr package provides a suite functions to perform this processing and recoding. These functions and their syntax can be easily remembered as the create_op_ functions as their function names start with the create_ verb followed by the op_ label and then followed by an indicator or indicator set specific identifier or short name. Finally, an additional tag for male or female can be added to the main function to provide gender-specific outputs.

Currently, a standard RAM-OP can provide results for the 13 indicators or indicator sets for older people. The following table shows these indicators/indicator sets alongside the functions related to them:

Indicator / Indicator Set Related Functions
Demography and situation create_op_demo; create_op_demo_males; create_op_demo_females
Food intake create_op_food; create_op_food_males; create_op_food_females
Severe food insecurity create_op_hunger; create_op_hunger_males; create_op_hunger_females
Disability create_op_disability; create_op_disability_males; create_op_disability_females
Activities of daily living create_op_adl; create_op_adl_males; create_op_adl_females
Mental health and well-being create_op_mental; create_op_mental_males; create_op_mental_females
Dementia create_op_dementia; create_op_dementia_males; create_op_dementia_females
Health and health-seeking behaviour create_op_health; create_op_health_males; create_op_health_females
Sources of income create_op_income; create_op_income_males; create_op_income_females
Water, sanitation, and hygiene create_op_wash; create_op_wash_males; create_op_wash_females
Anthropometry and anthropometric screening coverage create_op_anthro; create_op_anthro_males; create_op_anthro_females
Visual impairment create_op_visual; create_op_visual_males; create_op_visual_females
Miscellaneous create_op_misc; create_op_misc_males; create_op_misc_females

A final function in the processing and recoding set - create_op - is provided to perform the processing and recoding of all indicators or indicator sets. This function allows for the specification of which indicators or indicator sets to process and recode which is useful for cases where not all the indicators or indicator sets have been collected or if only specific indicators or indicator sets need to be analysed or reported. This function also specifies whether a specific gender subset of the data is needed.

For a standard RAM-OP implementation, this step is performed in R as follows:

## Process and recode all standard RAM-OP indicators in the testSVY dataset
create_op(svy = testSVY)

which results in the following output:

#> # A tibble: 192 × 138
#>      psu  sex1  sex2 resp1 resp2 resp3 resp4   age ageGrp1 ageGrp2 ageGrp3
#>    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>   <dbl>   <dbl>   <dbl>
#>  1   201     0     1     1     0     0     0    67       0       1       0
#>  2   201     1     0     1     0     0     0    74       0       0       1
#>  3   201     1     0     1     0     0     0    60       0       1       0
#>  4   201     0     1     1     0     0     0    60       0       1       0
#>  5   201     0     1     1     0     0     0    85       0       0       0
#>  6   201     1     0     0     1     0     0    86       0       0       0
#>  7   201     1     0     1     0     0     0    80       0       0       0
#>  8   201     0     1     1     0     0     0    60       0       1       0
#>  9   201     1     0     1     0     0     0    62       0       1       0
#> 10   201     0     1     1     0     0     0    72       0       0       1
#> # ℹ 182 more rows
#> # ℹ 127 more variables: ageGrp4 <dbl>, ageGrp5 <dbl>, marital1 <dbl>,
#> #   marital2 <dbl>, marital3 <dbl>, marital4 <dbl>, marital5 <dbl>,
#> #   marital6 <dbl>, alone <dbl>, MF <dbl>, DDS <dbl>, FG01 <dbl>, FG02 <dbl>,
#> #   FG03 <dbl>, FG04 <dbl>, FG05 <dbl>, FG06 <dbl>, FG07 <dbl>, FG08 <dbl>,
#> #   FG09 <dbl>, FG10 <dbl>, FG11 <dbl>, proteinRich <dbl>, pProtein <dbl>,
#> #   aProtein <dbl>, pVitA <dbl>, aVitA <dbl>, xVitA <dbl>, ironRich <dbl>, …

Estimating indicators

Once data has been processed and appropriate recoding for indicators has been performed, indicator estimates can now be calculated.

It is important to note that estimation procedures need to account for the sample design. All major statistical analysis software can do this (details vary). There are two things to note:

  • The RAM-OP sample is a two-stage sample. Subjects are sampled from a small number of primary sampling units (PSUs).

  • The RAM-OP sample is not prior weighted. This means that per-PSU sampling weights are needed. These are usually the populations of the PSU.

This sample design will need to be specified to statistical analysis software being used. If no weights are provided, then the analysis may produce estimates that place undue weight to observations from smaller communities with confidence intervals with lower than nominal coverage (i.e. they will be too narrow).

Blocked weighted bootstrap

The oldr package uses blocked weighted bootstrap estimation approach:

  • Blocked : The block corresponds to the PSU or cluster.

  • Weighted : The RAM-OP sampling procedure does not use population proportional sampling to weight the sample prior to data collection as is done with SMART type surveys. This means that a posterior weighting procedure is required. The standard RAM-OP software uses a “roulette wheel” algorithm to weight (i.e. by population) the selection probability of PSUs in bootstrap replicates.

A total of m PSUs are sampled with-replacement from the survey dataset where m is the number of PSUs in the survey sample. Individual records within each PSU are then sampled with-replacement. A total of n records are sampled with-replacement from each of the selected PSUs where n is the number of individual records in a selected PSU. The resulting collection of records replicates the original survey in terms of both sample design and sample size. A large number of replicate surveys are taken (the standard RAM-OP software uses r = 399 replicate surveys but this can be changed). The required statistic (e.g. the mean of an indicator value) is applied to each replicate survey. The reported estimate consists of the 50th (point estimate), 2.5th (lower 95% confidence limit), and the 97.5th (upper 95% confidence limit) percentiles of the distribution of the statistic observed across all replicate surveys. The blocked weighted bootstrap procedure is outlined in the figure below.

Blocked weighted bootstrap

The principal advantages of using a bootstrap estimator are:

  • Bootstrap estimators work well with small sample sizes.

  • The method is non-parametric and uses empirical rather than theoretical distributions. There are no assumptions of things like normality to worry about.

  • The method allows estimation of the sampling distribution of almost any statistic using only simple computational methods.

PROBIT estimator

The prevalence of GAM, MAM, and SAM are estimated using a PROBIT estimator. This type of estimator provides better precision than a classic estimator at small sample sizes as discussed in the following literature:

World Health Organisation, Physical Status: The use and interpretation of anthropometry. Report of a WHO expert committee, WHO Technical Report Series 854, WHO, Geneva, 1995

Dale NM, Myatt M, Prudhon C, Briend, A, “Assessment of the PROBIT approach for estimating the prevalence of global, moderate and severe acute malnutrition from population surveys”, Public Health Nutrition, 1–6. https://doi.org/10.1017/s1368980012003345, 2012

Blanton CJ, Bilukha, OO, “The PROBIT approach in estimating the prevalence of wasting: revisiting bias and precision”, Emerging Themes in Epidemiology, 10(1), 2013, p. 8

An estimate of GAM prevalence can be made using a classic estimator:

$$ \text{prevalence} ~ = ~ \frac{\text{Number of respondents with MUAC < 210}}{\text{Total number of respondents}} $$

On the other hand, the estimate of GAM prevalence made from the RAM-OP survey data is made using a PROBIT estimator. The PROBIT function is also known as the inverse cumulative distribution function. This function converts parameters of the distribution of an indicator (e.g. the mean and standard deviation of a normally distributed variable) into cumulative percentiles. This means that it is possible to use the normal PROBIT function with estimates of the mean and standard deviation of indicator values in a survey sample to predict (or estimate) the proportion of the population falling below a given threshold. For example, for data with a mean MUAC of 256 mm and a standard deviation of 28 mm the output of the normal PROBIT function for a threshold of 210 mm is 0.0502 meaning that 5.02% of the population are predicted (or estimated) to fall below the 210 mm threshold.

Both the classic and the PROBIT methods can be thought of as estimating area:

RAM-OP estimators

The principal advantage of the PROBIT approach is that the required sample size is usually smaller than that required to estimate prevalence with a given precision using the classic method.

The PROBIT method assumes that MUAC is a normally distributed variable. If this is not the case then the distribution of MUAC is transformed towards normality.

The prevalence of SAM is estimated in a similar way to GAM. The prevalence of MAM is estimated as the difference between the GAM and SAM prevalence estimates:

$$ \widehat{\text{GAM prevalence}} ~ = ~ \widehat{\text{GAM prevalence}} - \widehat{\text{SAM prevalence}} $$

Classic estimator

The function estimateClassic in oldr implements the blocked weighted bootstrap classic estimator of RAM-OP. This function uses the bootClassic statistic to estimate indicator values.

The estimateClassic function is used for all the standard RAM-OP indicators except for anthropometry. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform classic estimation on recoded data using appropriate weights provided by testPSU
classicDF <- estimate_classic(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 136 × 10
#>    INDICATOR EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>    <chr>       <dbl>   <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#>  1 resp1      0.839   0.808   0.879     0.824     0.749     0.888       0.880 
#>  2 resp2      0.104   0.0844  0.134     0.0882    0.0484    0.141       0.0965
#>  3 resp3      0.0365  0.0312  0.0625    0.0641    0.0288    0.0782      0.0167
#>  4 resp4      0.0104  0       0.0292    0.0235    0         0.0515      0     
#>  5 age       71.1    69.2    72.2      71.6      70.0      73.0        70.7   
#>  6 ageGrp1    0       0       0         0         0         0           0     
#>  7 ageGrp2    0.521   0.433   0.590     0.487     0.38      0.551       0.523 
#>  8 ageGrp3    0.260   0.176   0.305     0.261     0.184     0.350       0.225 
#>  9 ageGrp4    0.208   0.101   0.275     0.208     0.141     0.286       0.211 
#> 10 ageGrp5    0.0417  0.0115  0.0708    0.0429    0.0120    0.122       0.0180
#> # ℹ 126 more rows
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

PROBIT estimator

The function estimateProbit in oldr implements the blocked weighted bootstrap PROBIT estimator of RAM-OP. This function uses the probit_GAM and the probit_SAM statistic to estimate indicator values.

The estimateProbit function is used for only the anthropometric indicators. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform probit estimation on recoded data using appropriate weights provided by testPSU
probitDF <- estimate_probit(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 3 × 10
#>   INDICATOR   EST.ALL  LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>   <chr>         <dbl>    <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#> 1 GAM         2.84e-2 7.32e- 3 0.0527   9.33e- 3  1.06e- 3  0.0214       0.0301 
#> 2 MAM         2.64e-2 6.87e- 3 0.0527   9.33e- 3  1.02e- 3  0.0214       0.0300 
#> 3 SAM         9.98e-6 2.43e-17 0.00305  6.77e-19  6.30e-36  0.000161     0.00170
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

The two sets of estimates are then merged using the merge_op function as follows:

## Merge classicDF and probitDF
resultsDF <- merge_op(x = classicDF, y = probitDF)

resultsDF

which results in:

#> # A tibble: 139 × 13
#>    INDICATOR GROUP       LABEL TYPE  EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES
#>    <fct>     <fct>       <fct> <fct>   <dbl>   <dbl>   <dbl>     <dbl>     <dbl>
#>  1 resp1     Survey      Resp… Prop…  0.839   0.808   0.879     0.824     0.749 
#>  2 resp2     Survey      Resp… Prop…  0.104   0.0844  0.134     0.0882    0.0484
#>  3 resp3     Survey      Resp… Prop…  0.0365  0.0312  0.0625    0.0641    0.0288
#>  4 resp4     Survey      Resp… Prop…  0.0104  0       0.0292    0.0235    0     
#>  5 age       Demography… Mean… Mean  71.1    69.2    72.2      71.6      70.0   
#>  6 ageGrp1   Demography… Self… Prop…  0       0       0         0         0     
#>  7 ageGrp2   Demography… Self… Prop…  0.521   0.433   0.590     0.487     0.38  
#>  8 ageGrp3   Demography… Self… Prop…  0.260   0.176   0.305     0.261     0.184 
#>  9 ageGrp4   Demography… Self… Prop…  0.208   0.101   0.275     0.208     0.141 
#> 10 ageGrp5   Demography… Self… Prop…  0.0417  0.0115  0.0708    0.0429    0.0120
#> # ℹ 129 more rows
#> # ℹ 4 more variables: UCL.MALES <dbl>, EST.FEMALES <dbl>, LCL.FEMALES <dbl>,
#> #   UCL.FEMALES <dbl>

Creating charts

Once indicators has been estimated, the outputs can then be used to create relevant charts to visualise the results. A set of functions that start with the verb chart_op_ is provided followed by the indicator identifier to specify the type of indicator to visualise. The output of the function is a PNG file saved in the specified filename appended to the indicator identifier within the current working directory or saved in the specified filename appended to the indicator identifier in the specified directory path.

The following shows how to produce the chart for ADLs saved with filename test appended at the start inside a temporary directory:

chart_op_adl(x = create_op(testSVY), filename = file.path(tempdir(), "test"))
#> png 
#>   2

The resulting PNG file can be found in the temporary directory

file.exists(path = file.path(tempdir(), "test.png"))
#> [1] FALSE

and will look something like this:

RAM-OP chart showing information on activities of daily living

Reporting estimates

Finally, estimates can be reported through report tables. The report_op_table function facilitates this through the following syntax:

report_op_table(estimates = resultsDF, filename = file.path(tempdir(), "TEST"))

The resulting CSV file is found in the temporary directory

file.exists(path = file.path(tempdir(), "TEST.csv"))
#> [1] FALSE

and will look something like this:

#>                              X  X.1     X.2     X.3     X.4     X.5     X.6
#> 1                       Survey                                             
#> 2                                       ALL                   MALES        
#> 3                    INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 4                           99    2  0.8385  0.8083  0.8792  0.8235  0.7489
#> 5                           96    2  0.1042  0.0844  0.1344  0.0882  0.0484
#> 6                           98    2  0.0365  0.0312  0.0625  0.0641  0.0288
#> 7                           97    2  0.0104  0.0000  0.0292  0.0235  0.0000
#> 8                                                                          
#> 9     Demography and situation                                             
#> 10                                      ALL                   MALES        
#> 11                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 12                          54    1 71.0677 69.2094 72.2031 71.5761 70.0141
#> 13                         106    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 14                         107    2  0.5208  0.4333  0.5896  0.4872  0.3800
#> 15                         108    2  0.2604  0.1760  0.3052  0.2609  0.1835
#> 16                         109    2  0.2083  0.1010  0.2750  0.2083  0.1407
#> 17                         105    2  0.0417  0.0115  0.0708  0.0429  0.0120
#> 18                         115    2  0.4010  0.3708  0.4854  1.0000  1.0000
#> 19                         114    2  0.5990  0.5146  0.6292  0.0000  0.0000
#> 20                          51    2  0.0260  0.0010  0.0500  0.0286  0.0000
#> 21                          49    2  0.2969  0.2406  0.3615  0.5588  0.4482
#> 22                          48    2  0.1042  0.0573  0.1406  0.1618  0.1059
#> 23                          47    2  0.0729  0.0312  0.1104  0.0588  0.0057
#> 24                          52    2  0.5000  0.4260  0.6010  0.1746  0.1059
#> 25                          50    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 26                         127    2  0.1510  0.1021  0.1812  0.1529  0.0984
#> 27                                                                         
#> 28                        Diet                                             
#> 29                                      ALL                   MALES        
#> 30                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 31                          53    1  2.5573  2.4969  2.6979  2.3971  2.2918
#> 32                          25    1  4.5000  4.3125  4.7740  4.2949  4.1790
#> 33                          14    2  0.9167  0.8906  0.9375  0.9059  0.8617
#> 34                          23    2  0.4948  0.4281  0.5677  0.4722  0.3153
#> 35                          18    2  0.5781  0.5281  0.6396  0.5397  0.4119
#> 36                          20    2  0.0677  0.0271  0.0854  0.0278  0.0024
#> 37                          15    2  0.0260  0.0115  0.0552  0.0417  0.0146
#> 38                          17    2  0.3333  0.2760  0.4021  0.4118  0.3560
#> 39                          19    2  0.4062  0.3208  0.4677  0.3882  0.3473
#> 40                          21    2  0.0104  0.0000  0.0354  0.0000  0.0000
#> 41                          16    2  0.2292  0.1792  0.2385  0.2235  0.1821
#> 42                          24    2  0.4688  0.4229  0.5250  0.3765  0.3484
#> 43                          22    2  0.9792  0.9479  0.9948  0.9765  0.8934
#> 44                                                                         
#> 45                   Nutrients                                             
#> 46                                      ALL                   MALES        
#> 47                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 48                          88    2  0.4688  0.3656  0.5323  0.4706  0.3937
#> 49                          89    2  0.4062  0.3208  0.4677  0.3882  0.3473
#> 50                          87    2  0.1094  0.0740  0.1427  0.0706  0.0495
#> 51                          83    2  0.6198  0.5635  0.6635  0.5647  0.4882
#> 52                           2    2  0.0469  0.0229  0.0771  0.0513  0.0419
#> 53                           3    2  0.6302  0.5740  0.6990  0.5897  0.5059
#> 54                          42    2  0.6667  0.6042  0.7260  0.6324  0.5698
#> 55                           9    2  0.0104  0.0000  0.0354  0.0000  0.0000
#> 56                         140    2  0.5990  0.5594  0.6635  0.6824  0.5557
#> 57                         135    2  0.6354  0.6021  0.6969  0.6957  0.5668
#> 58                         137    2  0.8177  0.7708  0.8531  0.8095  0.6846
#> 59                         138    2  0.5990  0.5594  0.6635  0.6824  0.5557
#> 60                         139    2  0.8646  0.8333  0.8896  0.8857  0.7692
#> 61                         136    2  0.3802  0.3344  0.4781  0.4487  0.3959
#> 62                         134    2  0.3698  0.3333  0.4708  0.4471  0.3804
#> 63                                                                         
#> 64               Food Security                                             
#> 65                                      ALL                   MALES        
#> 66                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 67                          45    2  0.7604  0.6948  0.8344  0.7460  0.6848
#> 68                          60    2  0.1771  0.1125  0.2479  0.2206  0.0548
#> 69                         113    2  0.0260  0.0167  0.0302  0.0353  0.0032
#> 70                                                                         
#> 71             Disability (WG)                                             
#> 72                                      ALL                   MALES        
#> 73                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 74                         129    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 75                         130    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 76                         131    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 77                         132    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 78                          28    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 79                          29    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 80                          30    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 81                          31    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 82                          55    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 83                          56    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 84                          57    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 85                          58    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 86                          92    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 87                          93    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 88                          94    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 89                          95    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 90                         101    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 91                         102    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 92                         103    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 93                         104    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 94                          10    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 95                          11    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 96                          12    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 97                          13    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 98                          63    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 99                           5    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 100                          6    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 101                          7    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 102                         62    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 103                                                                        
#> 104 Activities of daily living                                             
#> 105                                     ALL                   MALES        
#> 106                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 107                         35    2  0.9792  0.9365  0.9844  0.9615  0.9327
#> 108                         37    2  0.9896  0.9750  1.0000  0.9783  0.9415
#> 109                         39    2  0.9896  0.9750  1.0000  0.9783  0.9415
#> 110                         40    2  0.9740  0.9458  0.9969  0.9583  0.9194
#> 111                         36    2  0.7396  0.6625  0.7635  0.7765  0.6855
#> 112                         38    2  0.9896  0.9854  1.0000  0.9841  0.9647
#> 113                         44    1  5.6667  5.5240  5.7260  5.6154  5.4631
#> 114                         41    2  0.9792  0.9635  1.0000  0.9783  0.9415
#> 115                         82    2  0.0052  0.0000  0.0250  0.0000  0.0000
#> 116                        112    2  0.0104  0.0000  0.0250  0.0217  0.0120
#> 117                        126    2  0.5833  0.5458  0.6250  0.5529  0.3871
#> 118                        125    2  0.1198  0.0844  0.1656  0.1412  0.0974
#> 119                                                                        
#> 120              Mental health                                             
#> 121                                     ALL                   MALES        
#> 122                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 123                         43    1 12.0729 11.1958 12.9740 12.1587  9.9867
#> 124                        110    2  0.4427  0.4250  0.5406  0.5059  0.4143
#> 125                         85    2  0.1875  0.1281  0.2219  0.1944  0.1246
#> 126                                                                        
#> 127                     Health                                             
#> 128                                     ALL                   MALES        
#> 129                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 130                         46    2  0.4219  0.3531  0.4750  0.3571  0.3378
#> 131                        128    2  0.7468  0.7094  0.8086  0.6250  0.4884
#> 132                         74    2  0.0625  0.0000  0.3187  0.2857  0.0222
#> 133                         79    2  0.2500  0.2055  0.6253  0.3571  0.0250
#> 134                         80    2  0.1667  0.0000  0.3621  0.0000  0.0000
#> 135                         81    2  0.2083  0.1367  0.2682  0.1429  0.0000
#> 136                         73    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 137                         77    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 138                         75    2  0.0000  0.0000  0.0800  0.0000  0.0000
#> 139                         78    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 140                         76    2  0.1765  0.0125  0.4267  0.2000  0.0267
#> 141                         91    2  0.8750  0.8146  0.9281  0.8571  0.7741
#> 142                          1    2  0.8466  0.7657  0.8619  0.7237  0.6617
#> 143                         65    2  0.0870  0.0000  0.2162  0.1429  0.0000
#> 144                         70    2  0.8750  0.5840  0.9097  0.7778  0.4667
#> 145                         71    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 146                         72    2  0.0417  0.0000  0.1588  0.0455  0.0000
#> 147                         64    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 148                         68    2  0.0303  0.0000  0.1428  0.0000  0.0000
#> 149                         66    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 150                         69    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 151                         67    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 152                          8    2  0.0156  0.0021  0.0333  0.0109  0.0000
#> 153                        133    2  0.3958  0.2958  0.4677  0.4853  0.4212
#> 154                         86    2  0.2865  0.2573  0.3333  0.2206  0.1671
#> 155                                                                        
#> 156                     Income                                             
#> 157                                     ALL                   MALES        
#> 158                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 159                         27    2  0.5469  0.4760  0.6500  0.6286  0.5619
#> 160                        116    2  0.3594  0.2885  0.4885  0.4286  0.3495
#> 161                        124    2  0.1146  0.0729  0.1396  0.2000  0.0725
#> 162                        121    2  0.0312  0.0062  0.0552  0.0294  0.0022
#> 163                        123    2  0.0469  0.0323  0.0823  0.0118  0.0000
#> 164                        119    2  0.0052  0.0000  0.0240  0.0000  0.0000
#> 165                        122    2  0.0052  0.0000  0.0302  0.0353  0.0024
#> 166                        118    2  0.0104  0.0052  0.0396  0.0217  0.0000
#> 167                        117    2  0.3385  0.2500  0.3688  0.2471  0.1942
#> 168                        120    2  0.0104  0.0010  0.0208  0.0000  0.0000
#> 169                                                                        
#> 170                       WASH                                             
#> 171                                     ALL                   MALES        
#> 172                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 173                         34    2  0.5990  0.5260  0.6698  0.5694  0.5043
#> 174                        100    2  0.6979  0.6146  0.7885  0.6250  0.5374
#> 175                         33    2  0.2448  0.2104  0.3115  0.2471  0.1707
#> 176                         32    2  0.2240  0.1969  0.3094  0.2471  0.1664
#> 177                                                                        
#> 178                     Relief                                             
#> 179                                     ALL                   MALES        
#> 180                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 181                         84    2  0.0260  0.0062  0.0740  0.0286  0.0110
#> 182                          4    2  0.0469  0.0135  0.0792  0.0471  0.0146
#> 183                         90    2  0.0208  0.0115  0.0500  0.0286  0.0000
#> 184                                                                        
#> 185              Anthropometry                                             
#> 186                                     ALL                   MALES        
#> 187                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 188                         26    2  0.0284  0.0073  0.0527  0.0093  0.0011
#> 189                         59    2  0.0264  0.0069  0.0527  0.0093  0.0010
#> 190                        111    2  0.0000  0.0000  0.0030  0.0000  0.0000
#>         X.7     X.8     X.9    X.10
#> 1                                  
#> 2           FEMALES                
#> 3       UCL     EST     LCL     UCL
#> 4    0.8883  0.8803  0.8295  0.9334
#> 5    0.1413  0.0965  0.0630  0.1298
#> 6    0.0782  0.0167  0.0000  0.0357
#> 7    0.0515  0.0000  0.0000  0.0179
#> 8                                  
#> 9                                  
#> 10          FEMALES                
#> 11      UCL     EST     LCL     UCL
#> 12  72.9940 70.7241 69.5763 72.5032
#> 13   0.0000  0.0000  0.0000  0.0000
#> 14   0.5509  0.5231  0.4829  0.5868
#> 15   0.3504  0.2252  0.1438  0.2817
#> 16   0.2861  0.2105  0.1737  0.3104
#> 17   0.1218  0.0180  0.0000  0.0500
#> 18   1.0000  0.0000  0.0000  0.0000
#> 19   0.0000  1.0000  1.0000  1.0000
#> 20   0.0616  0.0485  0.0120  0.1142
#> 21   0.6627  0.1308  0.0811  0.1936
#> 22   0.2565  0.0769  0.0461  0.1396
#> 23   0.1389  0.0450  0.0018  0.1168
#> 24   0.2552  0.6667  0.5725  0.8008
#> 25   0.0000  0.0000  0.0000  0.0000
#> 26   0.2063  0.1250  0.0437  0.1600
#> 27                                 
#> 28                                 
#> 29          FEMALES                
#> 30      UCL     EST     LCL     UCL
#> 31   2.6982  2.6036  2.3240  2.7955
#> 32   4.7460  4.7184  4.5286  4.8805
#> 33   0.9683  0.9231  0.8732  0.9791
#> 34   0.5118  0.5586  0.5270  0.6017
#> 35   0.6600  0.6325  0.5665  0.7170
#> 36   0.0504  0.0684  0.0435  0.1237
#> 37   0.0588  0.0180  0.0000  0.0343
#> 38   0.5306  0.2632  0.2037  0.3380
#> 39   0.5283  0.4359  0.3368  0.5069
#> 40   0.0378  0.0439  0.0274  0.1004
#> 41   0.2799  0.2167  0.1757  0.2393
#> 42   0.5076  0.5470  0.4850  0.6444
#> 43   1.0000  0.9833  0.9102  1.0000
#> 44                                 
#> 45                                 
#> 46          FEMALES                
#> 47      UCL     EST     LCL     UCL
#> 48   0.5518  0.5167  0.4265  0.5758
#> 49   0.5283  0.4359  0.3368  0.5069
#> 50   0.1153  0.1462  0.1136  0.1791
#> 51   0.6306  0.6486  0.5999  0.7277
#> 52   0.0682  0.0574  0.0410  0.1080
#> 53   0.6659  0.6923  0.6378  0.7637
#> 54   0.6855  0.7049  0.6286  0.7760
#> 55   0.0378  0.0439  0.0274  0.1004
#> 56   0.7536  0.6019  0.5058  0.6384
#> 57   0.7578  0.6810  0.5582  0.7321
#> 58   0.8849  0.8462  0.7947  0.8957
#> 59   0.7536  0.6019  0.5058  0.6384
#> 60   0.9724  0.8583  0.8231  0.9000
#> 61   0.5376  0.3462  0.2613  0.4070
#> 62   0.5329  0.3462  0.2613  0.3931
#> 63                                 
#> 64                                 
#> 65          FEMALES                
#> 66      UCL     EST     LCL     UCL
#> 67   0.9093  0.8198  0.7397  0.8780
#> 68   0.2751  0.1316  0.0736  0.1913
#> 69   0.0650  0.0291  0.0104  0.0648
#> 70                                 
#> 71                                 
#> 72          FEMALES                
#> 73      UCL     EST     LCL     UCL
#> 74   1.0000  1.0000  1.0000  1.0000
#> 75   0.0000  0.0000  0.0000  0.0000
#> 76   0.0000  0.0000  0.0000  0.0000
#> 77   0.0000  0.0000  0.0000  0.0000
#> 78   1.0000  1.0000  1.0000  1.0000
#> 79   0.0000  0.0000  0.0000  0.0000
#> 80   0.0000  0.0000  0.0000  0.0000
#> 81   0.0000  0.0000  0.0000  0.0000
#> 82   1.0000  1.0000  1.0000  1.0000
#> 83   0.0000  0.0000  0.0000  0.0000
#> 84   0.0000  0.0000  0.0000  0.0000
#> 85   0.0000  0.0000  0.0000  0.0000
#> 86   1.0000  1.0000  1.0000  1.0000
#> 87   0.0000  0.0000  0.0000  0.0000
#> 88   0.0000  0.0000  0.0000  0.0000
#> 89   0.0000  0.0000  0.0000  0.0000
#> 90   1.0000  1.0000  1.0000  1.0000
#> 91   0.0000  0.0000  0.0000  0.0000
#> 92   0.0000  0.0000  0.0000  0.0000
#> 93   0.0000  0.0000  0.0000  0.0000
#> 94   1.0000  1.0000  1.0000  1.0000
#> 95   0.0000  0.0000  0.0000  0.0000
#> 96   0.0000  0.0000  0.0000  0.0000
#> 97   0.0000  0.0000  0.0000  0.0000
#> 98   1.0000  1.0000  1.0000  1.0000
#> 99   0.0000  0.0000  0.0000  0.0000
#> 100  0.0000  0.0000  0.0000  0.0000
#> 101  0.0000  0.0000  0.0000  0.0000
#> 102  0.0000  0.0000  0.0000  0.0000
#> 103                                
#> 104                                
#> 105         FEMALES                
#> 106     UCL     EST     LCL     UCL
#> 107  0.9779  0.9825  0.9643  1.0000
#> 108  0.9880  1.0000  0.9928  1.0000
#> 109  0.9880  1.0000  0.9928  1.0000
#> 110  0.9880  0.9667  0.9171  0.9965
#> 111  0.8471  0.7000  0.5721  0.7635
#> 112  0.9978  1.0000  1.0000  1.0000
#> 113  5.7183  5.6583  5.4943  5.6958
#> 114  0.9880  0.9833  0.9346  0.9985
#> 115  0.0000  0.0167  0.0015  0.0654
#> 116  0.0585  0.0000  0.0000  0.0000
#> 117  0.6430  0.6639  0.5227  0.7475
#> 118  0.2030  0.1081  0.0239  0.1787
#> 119                                
#> 120                                
#> 121         FEMALES                
#> 122     UCL     EST     LCL     UCL
#> 123 13.5763 12.4923 11.0184 13.5120
#> 124  0.5914  0.4912  0.3915  0.5615
#> 125  0.2659  0.2167  0.1756  0.3415
#> 126                                
#> 127                                
#> 128         FEMALES                
#> 129     UCL     EST     LCL     UCL
#> 130  0.4559  0.5315  0.4442  0.5942
#> 131  0.7898  0.8356  0.7231  0.8936
#> 132  0.3950  0.0833  0.0000  0.1516
#> 133  0.6333  0.4615  0.4167  0.8167
#> 134  0.0000  0.2105  0.0000  0.4286
#> 135  0.5400  0.0000  0.0000  0.0000
#> 136  0.0000  0.0000  0.0000  0.0000
#> 137  0.0000  0.0000  0.0000  0.0000
#> 138  0.0000  0.0000  0.0000  0.0842
#> 139  0.0000  0.0000  0.0000  0.0000
#> 140  0.4533  0.1538  0.0000  0.4500
#> 141  0.9010  0.8769  0.7759  0.9304
#> 142  0.8786  0.8673  0.8102  0.9807
#> 143  0.5121  0.0714  0.0000  0.2974
#> 144  0.9299  0.8500  0.6762  1.0000
#> 145  0.0000  0.0000  0.0000  0.0000
#> 146  0.2786  0.0000  0.0000  0.0000
#> 147  0.0000  0.0000  0.0000  0.0000
#> 148  0.0000  0.0000  0.0000  0.2014
#> 149  0.0000  0.0000  0.0000  0.0000
#> 150  0.0000  0.0000  0.0000  0.0615
#> 151  0.0000  0.0000  0.0000  0.0000
#> 152  0.0305  0.0175  0.0085  0.0498
#> 153  0.6005  0.3398  0.2425  0.4241
#> 154  0.3316  0.3246  0.2026  0.4127
#> 155                                
#> 156                                
#> 157         FEMALES                
#> 158     UCL     EST     LCL     UCL
#> 159  0.7006  0.5154  0.4480  0.6444
#> 160  0.6026  0.3301  0.2100  0.3751
#> 161  0.2867  0.0417  0.0171  0.0962
#> 162  0.1135  0.0000  0.0000  0.0219
#> 163  0.0235  0.0680  0.0369  0.0850
#> 164  0.0000  0.0082  0.0000  0.0303
#> 165  0.0560  0.0000  0.0000  0.0000
#> 166  0.0508  0.0000  0.0000  0.0338
#> 167  0.3894  0.3761  0.2806  0.4300
#> 168  0.0336  0.0000  0.0000  0.0334
#> 169                                
#> 170                                
#> 171         FEMALES                
#> 172     UCL     EST     LCL     UCL
#> 173  0.7061  0.5923  0.5483  0.6580
#> 174  0.7313  0.7027  0.6227  0.7739
#> 175  0.3365  0.2393  0.1970  0.3438
#> 176  0.3365  0.2083  0.1672  0.3173
#> 177                                
#> 178                                
#> 179         FEMALES                
#> 180     UCL     EST     LCL     UCL
#> 181  0.1064  0.0385  0.0174  0.0645
#> 182  0.0630  0.0692  0.0206  0.1132
#> 183  0.0659  0.0328  0.0086  0.0532
#> 184                                
#> 185                                
#> 186         FEMALES                
#> 187     UCL     EST     LCL     UCL
#> 188  0.0214  0.0301  0.0035  0.0471
#> 189  0.0214  0.0300  0.0015  0.0452
#> 190  0.0002  0.0017  0.0002  0.0054

The RAM-OP workflow in R using pipe operators

The oldr package functions were designed in such a way that they can be piped to each other to provide the desired output. Below we use the base R pipe operator |>.

Piped operation to get output estimates table

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_table(filename = file.path(tempdir(), "TEST"))

This results in a CSV file TEST.report.csv in the temporary directory

file.exists(file.path(tempdir(), "TEST.report.csv"))
#> [1] TRUE

with the following structure:

#>                              X  X.1      X.2      X.3      X.4      X.5
#> 1                       Survey                                         
#> 2                                        ALL                      MALES
#> 3                    INDICATOR TYPE      EST      LCL      UCL      EST
#> 4                           99    2  83.8542  80.8333  86.3542  83.3333
#> 5                           96    2  10.4167   7.0833  13.8542   5.9524
#> 6                           98    2   4.1667   1.7708   7.0833   3.7500
#> 7                           97    2   1.0417   0.1042   3.3333   3.7037
#> 8                                                                      
#> 9     Demography and situation                                         
#> 10                                       ALL                      MALES
#> 11                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 12                          54    1  70.7396  69.7271  72.2406  71.0897
#> 13                         106    2   0.0000   0.0000   0.0000   0.0000
#> 14                         107    2  55.2083  45.5208  58.7500  56.2500
#> 15                         108    2  25.5208  22.3958  28.3333  23.5294
#> 16                         109    2  15.1042   9.3750  25.9375  14.1026
#> 17                         105    2   4.6875   2.3958   7.1875   6.7568
#> 18                         115    2  38.5417  31.6667  44.7917 100.0000
#> 19                         114    2  61.4583  55.2083  68.3333   0.0000
#> 20                          51    2   3.6458   1.6667   5.8333   1.1905
#> 21                          49    2  30.7292  23.2292  39.2708  52.9412
#> 22                          48    2   9.8958   8.3333  12.6042  17.2840
#> 23                          47    2   5.7292   4.2708  10.2083  12.5000
#> 24                          52    2  48.4375  43.3333  53.1250  15.0000
#> 25                          50    2   0.0000   0.0000   0.0000   0.0000
#> 26                         127    2  13.0208   6.3542  16.8750  13.7500
#> 27                                                                     
#> 28                        Diet                                         
#> 29                                       ALL                      MALES
#> 30                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 31                          53    1   2.5885   2.4625   2.6948   2.4568
#> 32                          25    1   4.5625   4.4750   4.8177   4.5952
#> 33                          14    2  91.6667  87.6042  97.8125  92.8571
#> 34                          23    2  52.6042  48.6458  61.8750  52.5000
#> 35                          18    2  58.8542  53.4375  65.3125  58.9744
#> 36                          20    2   4.6875   3.1250   9.6875   3.7500
#> 37                          15    2   2.6042   1.1458   5.6250   3.7500
#> 38                          17    2  32.2917  29.1667  38.5417  43.7500
#> 39                          19    2  41.6667  34.5833  47.0833  40.4762
#> 40                          21    2   2.6042   1.0417   5.3125   0.0000
#> 41                          16    2  22.3958  18.0208  25.4167  25.9259
#> 42                          24    2  52.6042  41.7708  55.5208  42.3077
#> 43                          22    2  97.9167  95.9375  99.4792  97.4359
#> 44                                                                     
#> 45                   Nutrients                                         
#> 46                                       ALL                      MALES
#> 47                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 48                          88    2  46.3542  39.4792  53.2292  48.5294
#> 49                          89    2  41.6667  34.5833  47.0833  40.4762
#> 50                          87    2  11.4583   5.6250  18.2292   9.5238
#> 51                          83    2  63.5417  56.7708  66.1458  60.0000
#> 52                           2    2   5.7292   2.1875  10.4167   3.7500
#> 53                           3    2  64.5833  57.6042  70.5208  62.5000
#> 54                          42    2  65.6250  61.7708  71.9792  58.3333
#> 55                           9    2   2.6042   1.0417   5.3125   0.0000
#> 56                         140    2  58.8542  54.3750  67.3958  66.6667
#> 57                         135    2  64.0625  58.1250  70.2083  71.2500
#> 58                         137    2  80.7292  76.5625  86.0417  82.5000
#> 59                         138    2  58.8542  54.3750  67.3958  66.6667
#> 60                         139    2  84.8958  81.4583  91.8750  91.2500
#> 61                         136    2  37.5000  32.2917  43.8542  46.4286
#> 62                         134    2  37.5000  31.8750  41.2500  46.4286
#> 63                                                                     
#> 64               Food Security                                         
#> 65                                       ALL                      MALES
#> 66                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 67                          45    2  78.1250  68.4375  82.2917  71.4286
#> 68                          60    2  16.1458  13.6458  27.2917  25.0000
#> 69                         113    2   2.0833   0.7292   3.4375   4.7619
#> 70                                                                     
#> 71             Disability (WG)                                         
#> 72                                       ALL                      MALES
#> 73                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 74                         129    2 100.0000 100.0000 100.0000 100.0000
#> 75                         130    2   0.0000   0.0000   0.0000   0.0000
#> 76                         131    2   0.0000   0.0000   0.0000   0.0000
#> 77                         132    2   0.0000   0.0000   0.0000   0.0000
#> 78                          28    2 100.0000 100.0000 100.0000 100.0000
#> 79                          29    2   0.0000   0.0000   0.0000   0.0000
#> 80                          30    2   0.0000   0.0000   0.0000   0.0000
#> 81                          31    2   0.0000   0.0000   0.0000   0.0000
#> 82                          55    2 100.0000 100.0000 100.0000 100.0000
#> 83                          56    2   0.0000   0.0000   0.0000   0.0000
#> 84                          57    2   0.0000   0.0000   0.0000   0.0000
#> 85                          58    2   0.0000   0.0000   0.0000   0.0000
#> 86                          92    2 100.0000 100.0000 100.0000 100.0000
#> 87                          93    2   0.0000   0.0000   0.0000   0.0000
#> 88                          94    2   0.0000   0.0000   0.0000   0.0000
#> 89                          95    2   0.0000   0.0000   0.0000   0.0000
#> 90                         101    2 100.0000 100.0000 100.0000 100.0000
#> 91                         102    2   0.0000   0.0000   0.0000   0.0000
#> 92                         103    2   0.0000   0.0000   0.0000   0.0000
#> 93                         104    2   0.0000   0.0000   0.0000   0.0000
#> 94                          10    2 100.0000 100.0000 100.0000 100.0000
#> 95                          11    2   0.0000   0.0000   0.0000   0.0000
#> 96                          12    2   0.0000   0.0000   0.0000   0.0000
#> 97                          13    2   0.0000   0.0000   0.0000   0.0000
#> 98                          63    2 100.0000 100.0000 100.0000 100.0000
#> 99                           5    2   0.0000   0.0000   0.0000   0.0000
#> 100                          6    2   0.0000   0.0000   0.0000   0.0000
#> 101                          7    2   0.0000   0.0000   0.0000   0.0000
#> 102                         62    2   0.0000   0.0000   0.0000   0.0000
#> 103                                                                    
#> 104 Activities of daily living                                         
#> 105                                      ALL                      MALES
#> 106                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 107                         35    2  97.9167  96.0417  98.4375  93.7500
#> 108                         37    2  98.9583  97.5000  99.8958  95.5882
#> 109                         39    2  98.9583  97.5000  99.8958  95.5882
#> 110                         40    2  96.8750  94.4792  97.9167  95.0617
#> 111                         36    2  74.4792  70.4167  80.9375  77.3810
#> 112                         38    2 100.0000  98.9583 100.0000  98.5294
#> 113                         44    1   5.6562   5.6312   5.7135   5.5476
#> 114                         41    2  98.4375  96.5625  98.9583  95.5882
#> 115                         82    2   0.5208   0.0000   3.2292   0.0000
#> 116                        112    2   1.0417   0.0000   1.9792   4.4118
#> 117                        126    2  59.8958  52.5000  65.4167  52.5641
#> 118                        125    2  11.4583   5.7292  13.9583  15.3846
#> 119                                                                    
#> 120              Mental health                                         
#> 121                                      ALL                      MALES
#> 122                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 123                         43    1  12.4062  11.0552  13.0219  11.0256
#> 124                        110    2  48.9583  42.2917  56.4583  38.2353
#> 125                         85    2  19.7917  15.7292  28.1250  11.5385
#> 126                                                                    
#> 127                     Health                                         
#> 128                                      ALL                      MALES
#> 129                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 130                         46    2  47.3958  37.9167  50.9375  33.7500
#> 131                        128    2  77.0833  70.5495  87.7460  70.3704
#> 132                         74    2   9.0909   0.0000  21.7778   0.0000
#> 133                         79    2  31.8182  15.6364  61.4286  37.5000
#> 134                         80    2  15.0000   4.7619  35.9544   0.0000
#> 135                         81    2  13.6364   3.7963  32.6154  28.5714
#> 136                         73    2   0.0000   0.0000   0.0000   0.0000
#> 137                         77    2   0.0000   0.0000   0.0000   0.0000
#> 138                         75    2   0.0000   0.0000   0.0000   0.0000
#> 139                         78    2   0.0000   0.0000   0.0000   0.0000
#> 140                         76    2  15.0000   1.4286  54.0909  28.5714
#> 141                         91    2  87.5000  78.0208  89.4792  85.0000
#> 142                          1    2  84.2767  78.8335  86.1946  78.3333
#> 143                         65    2   4.5455   0.0000  11.8222   0.0000
#> 144                         70    2  90.9091  74.1818  96.3736  84.2105
#> 145                         71    2   0.0000   0.0000   0.0000   0.0000
#> 146                         72    2   0.0000   0.0000   6.5143  15.3846
#> 147                         64    2   0.0000   0.0000   0.0000   0.0000
#> 148                         68    2   0.0000   0.0000   7.5765   0.0000
#> 149                         66    2   0.0000   0.0000   0.0000   0.0000
#> 150                         69    2   0.0000   0.0000  14.5455   0.0000
#> 151                         67    2   0.0000   0.0000   0.0000   0.0000
#> 152                          8    2   2.0833   1.0417   5.8333   0.0000
#> 153                        133    2  39.0625  34.0625  48.3333  44.4444
#> 154                         86    2  34.3750  30.7292  39.0625  25.0000
#> 155                                                                    
#> 156                     Income                                         
#> 157                                      ALL                      MALES
#> 158                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 159                         27    2  54.6875  50.8333  65.8333  61.7284
#> 160                        116    2  34.3750  30.0000  44.3750  47.2973
#> 161                        124    2   9.3750   4.7917  18.8542  22.5000
#> 162                        121    2   1.5625   0.5208   3.5417   6.4103
#> 163                        123    2   4.6875   2.9167   8.2292   2.4691
#> 164                        119    2   0.5208   0.0000   2.7083   0.0000
#> 165                        122    2   1.0417   0.1042   2.9167   2.7027
#> 166                        118    2   3.1250   0.2083   4.5833   1.1905
#> 167                        117    2  32.8125  27.0833  44.6875  30.0000
#> 168                        120    2   1.5625   0.0000   2.5000   1.2500
#> 169                                                                    
#> 170                       WASH                                         
#> 171                                      ALL                      MALES
#> 172                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 173                         34    2  65.6250  56.5625  69.7917  61.2500
#> 174                        100    2  72.9167  63.2292  79.2708  70.2703
#> 175                         33    2  28.1250  18.5417  34.3750  30.7692
#> 176                         32    2  27.0833  17.1875  34.2708  29.4872
#> 177                                                                    
#> 178                     Relief                                         
#> 179                                      ALL                      MALES
#> 180                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 181                         84    2   3.1250   0.6250   5.9375   4.7619
#> 182                          4    2   3.1250   1.1458   6.2500   1.2821
#> 183                         90    2   2.0833   0.6250   4.5833   3.5714
#> 184                                                                    
#> 185              Anthropometry                                         
#> 186                                      ALL                      MALES
#> 187                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 188                         26    2   3.0186   2.3935   5.0943   1.0258
#> 189                         59    2   3.0176   2.3900   5.0549   1.0258
#> 190                        111    2   0.0328   0.0002   0.1506   0.0000
#>          X.6      X.7      X.8      X.9     X.10
#> 1                                               
#> 2                      FEMALES                  
#> 3        LCL      UCL      EST      LCL      UCL
#> 4    79.8332  92.7857  85.3448  81.2672  90.4249
#> 5     1.5811  12.0194  12.2807   8.7453  14.0373
#> 6     1.6667  13.8553   2.7273   0.0000   8.2476
#> 7     0.2500   6.4103   0.0000   0.0000   0.8882
#> 8                                               
#> 9                                               
#> 10                     FEMALES                  
#> 11       LCL      UCL      EST      LCL      UCL
#> 12   68.9115  71.6172  70.0252  69.1766  72.5471
#> 13    0.0000   0.0000   0.0000   0.0000   0.0000
#> 14   42.5559  65.0833  56.3025  43.9221  62.5670
#> 15   18.8095  39.5135  20.4918  17.7614  25.4150
#> 16    6.5119  19.9506  22.6891  15.9226  32.2468
#> 17    2.7143   8.9744   0.8621   0.0000   5.9040
#> 18  100.0000 100.0000   0.0000   0.0000   0.0000
#> 19    0.0000   0.0000 100.0000 100.0000 100.0000
#> 20    0.0000   3.5769   4.2017   0.3509   9.3322
#> 21   38.5843  63.9286  14.5455   8.8096  23.3063
#> 22   13.1789  24.5238  10.3448   2.9692  13.4953
#> 23    1.5385  17.2487   3.6364   1.9458   7.3051
#> 24    8.3077  31.3306  68.1818  59.0277  71.4037
#> 25    0.0000   0.0000   0.0000   0.0000   0.0000
#> 26    3.5219  18.8095  14.0351   6.9875  16.7647
#> 27                                              
#> 28                                              
#> 29                     FEMALES                  
#> 30       LCL      UCL      EST      LCL      UCL
#> 31    2.3710   2.6981   2.6555   2.4516   2.9343
#> 32    4.2795   5.0373   4.6364   4.4790   5.0878
#> 33   88.2190  98.5362  90.4762  85.1137  95.5672
#> 34   45.4405  66.2462  58.1967  50.9794  69.5567
#> 35   38.9560  68.9030  64.5455  51.0468  73.7532
#> 36    0.5000   8.5352   6.8966   4.2234  12.2640
#> 37    0.5128  10.1871   1.7241   0.0000   5.7818
#> 38   31.8654  49.1358  25.2174  18.5178  34.2063
#> 39   31.8708  49.7619  40.0000  32.0614  51.4633
#> 40    0.0000   1.2637   4.5455   2.7592  12.3975
#> 41   17.6891  30.6154  19.6721  15.0988  29.7619
#> 42   28.0672  53.2564  55.1724  45.4783  63.1780
#> 43   90.5742 100.0000  98.2759  94.2506 100.0000
#> 44                                              
#> 45                                              
#> 46                     FEMALES                  
#> 47       LCL      UCL      EST      LCL      UCL
#> 48   38.9487  57.2365  50.9091  43.7719  58.8796
#> 49   31.8708  49.7619  40.0000  32.0614  51.4633
#> 50    1.2500  17.6043  14.6552   8.6192  22.3957
#> 51   45.4212  70.6471  68.6957  54.5197  77.9449
#> 52    0.5128  10.4435   7.1429   4.2704  15.0446
#> 53   48.1868  71.1471  70.0000  57.3030  80.0919
#> 54   51.2821  71.6049  70.5882  58.3744  77.8530
#> 55    0.0000   1.2637   4.5455   2.7592  12.3975
#> 56   56.1614  78.0695  57.2727  49.5801  64.3509
#> 57   58.5068  79.6268  66.3934  54.1053  69.4755
#> 58   69.5023  86.0406  85.0877  80.8374  90.7376
#> 59   56.1614  78.0695  57.2727  49.5801  64.3509
#> 60   81.1573  92.8042  86.8421  83.8608  91.1462
#> 61   36.9679  55.2819  34.7826  25.6740  41.2126
#> 62   36.9679  53.9540  34.7826  23.2918  39.9015
#> 63                                              
#> 64                                              
#> 65                     FEMALES                  
#> 66       LCL      UCL      EST      LCL      UCL
#> 67   61.1574  74.1026  77.3913  74.6364  86.2125
#> 68   20.7206  29.7097  13.9344  10.5973  18.1008
#> 69    0.2564   9.4012   3.4783   0.3279   5.1478
#> 70                                              
#> 71                                              
#> 72                     FEMALES                  
#> 73       LCL      UCL      EST      LCL      UCL
#> 74  100.0000 100.0000 100.0000 100.0000 100.0000
#> 75    0.0000   0.0000   0.0000   0.0000   0.0000
#> 76    0.0000   0.0000   0.0000   0.0000   0.0000
#> 77    0.0000   0.0000   0.0000   0.0000   0.0000
#> 78  100.0000 100.0000 100.0000 100.0000 100.0000
#> 79    0.0000   0.0000   0.0000   0.0000   0.0000
#> 80    0.0000   0.0000   0.0000   0.0000   0.0000
#> 81    0.0000   0.0000   0.0000   0.0000   0.0000
#> 82  100.0000 100.0000 100.0000 100.0000 100.0000
#> 83    0.0000   0.0000   0.0000   0.0000   0.0000
#> 84    0.0000   0.0000   0.0000   0.0000   0.0000
#> 85    0.0000   0.0000   0.0000   0.0000   0.0000
#> 86  100.0000 100.0000 100.0000 100.0000 100.0000
#> 87    0.0000   0.0000   0.0000   0.0000   0.0000
#> 88    0.0000   0.0000   0.0000   0.0000   0.0000
#> 89    0.0000   0.0000   0.0000   0.0000   0.0000
#> 90  100.0000 100.0000 100.0000 100.0000 100.0000
#> 91    0.0000   0.0000   0.0000   0.0000   0.0000
#> 92    0.0000   0.0000   0.0000   0.0000   0.0000
#> 93    0.0000   0.0000   0.0000   0.0000   0.0000
#> 94  100.0000 100.0000 100.0000 100.0000 100.0000
#> 95    0.0000   0.0000   0.0000   0.0000   0.0000
#> 96    0.0000   0.0000   0.0000   0.0000   0.0000
#> 97    0.0000   0.0000   0.0000   0.0000   0.0000
#> 98  100.0000 100.0000 100.0000 100.0000 100.0000
#> 99    0.0000   0.0000   0.0000   0.0000   0.0000
#> 100   0.0000   0.0000   0.0000   0.0000   0.0000
#> 101   0.0000   0.0000   0.0000   0.0000   0.0000
#> 102   0.0000   0.0000   0.0000   0.0000   0.0000
#> 103                                             
#> 104                                             
#> 105                    FEMALES                  
#> 106      LCL      UCL      EST      LCL      UCL
#> 107  89.6786  97.4359  98.2456  93.7205 100.0000
#> 108  91.5714 100.0000 100.0000  96.1646 100.0000
#> 109  91.5714 100.0000 100.0000  96.1646 100.0000
#> 110  88.3382  99.7619  97.3684  93.9007  99.6721
#> 111  72.7059  87.9286  66.3934  59.0016  78.3354
#> 112  93.0123 100.0000 100.0000 100.0000 100.0000
#> 113   5.3825   5.7275   5.5826   5.5070   5.7463
#> 114  91.5714 100.0000  98.2143  93.1621 100.0000
#> 115   0.0000   0.0000   1.7857   0.0000   6.8379
#> 116   0.0000   8.4286   0.0000   0.0000   0.0000
#> 117  40.4286  71.8124  63.4783  52.8581  68.7768
#> 118   6.2291  21.3929  12.1739   5.4078  17.1264
#> 119                                             
#> 120                                             
#> 121                    FEMALES                  
#> 122      LCL      UCL      EST      LCL      UCL
#> 123   8.2778  12.6125  12.5238  11.8375  12.9857
#> 124  28.4303  50.7500  50.9091  45.9430  56.8067
#> 125  10.0513  27.3552  22.8070  18.1976  32.3302
#> 126                                             
#> 127                                             
#> 128                    FEMALES                  
#> 129      LCL      UCL      EST      LCL      UCL
#> 130  26.6281  38.7179  52.5862  45.9030  60.4333
#> 131  52.0348  87.9273  75.0000  68.6631  86.4301
#> 132   0.0000  42.8571   7.1429   0.0000  34.9206
#> 133   0.0000  50.0000  35.7143  25.7143  67.1111
#> 134   0.0000   0.0000  20.0000   2.8571  50.0000
#> 135   0.0000  65.8333   0.0000   0.0000   0.0000
#> 136   0.0000   0.0000   0.0000   0.0000   0.0000
#> 137   0.0000   0.0000   0.0000   0.0000   0.0000
#> 138   0.0000   0.0000   4.7619   0.0000  22.8571
#> 139   0.0000   0.0000   0.0000   0.0000   0.0000
#> 140   0.0000  53.6364  20.0000   1.9048  27.5630
#> 141  75.7231  90.9487  89.6552  87.9394  92.9106
#> 142  72.5684  84.1576  84.9057  77.6662  89.9553
#> 143   0.0000  19.3162   7.1429   0.0000  27.9487
#> 144  72.5275 100.0000  73.6842  65.6410 100.0000
#> 145   0.0000   0.0000   0.0000   0.0000   0.0000
#> 146   0.0000  27.4725   0.0000   0.0000   0.0000
#> 147   0.0000   0.0000   0.0000   0.0000   0.0000
#> 148   0.0000   0.0000   3.8462   0.0000  28.3333
#> 149   0.0000   0.0000   0.0000   0.0000   0.0000
#> 150   0.0000   0.0000   0.0000   0.0000  14.7368
#> 151   0.0000   0.0000   0.0000   0.0000   0.0000
#> 152   0.0000   2.3454   0.8772   0.1681   6.2863
#> 153  36.5714  56.4054  30.7018  25.6727  38.4156
#> 154  16.9231  38.2073  35.7143  27.3747  38.1526
#> 155                                             
#> 156                                             
#> 157                    FEMALES                  
#> 158      LCL      UCL      EST      LCL      UCL
#> 159  54.3590  71.3385  50.4348  46.4532  59.4015
#> 160  39.2986  56.2143  30.4348  19.9754  37.3183
#> 161  12.2222  30.3649   4.3103   1.0591   5.9558
#> 162   2.7143   8.2051   0.8696   0.0000   3.6423
#> 163   0.0000   4.8108   8.6207   2.5761  14.3049
#> 164   0.0000   0.0000   0.8621   0.0000   2.5631
#> 165   0.0000   5.9524   0.0000   0.0000   0.0000
#> 166   0.0000   7.0656   0.8621   0.0000   2.6646
#> 167  23.4615  36.3348  34.4828  32.0746  42.5945
#> 168   0.0000   3.3700   0.0000   0.0000   1.8117
#> 169                                             
#> 170                                             
#> 171                    FEMALES                  
#> 172      LCL      UCL      EST      LCL      UCL
#> 173  48.8235  71.4359  57.3913  50.0000  73.1047
#> 174  56.2325  75.1187  69.8276  62.5202  84.1270
#> 175  18.0392  38.0192  20.1754  16.3821  28.1755
#> 176  18.0392  36.1795  20.1681  13.6453  25.9248
#> 177                                             
#> 178                                             
#> 179                    FEMALES                  
#> 180      LCL      UCL      EST      LCL      UCL
#> 181   0.2564   8.4136   3.5714   2.6144   7.9859
#> 182   0.2381   8.7580   6.7227   1.6207   9.3253
#> 183   0.2564   5.2767   2.4590   0.8104   6.0345
#> 184                                             
#> 185                                             
#> 186                    FEMALES                  
#> 187      LCL      UCL      EST      LCL      UCL
#> 188   0.0035   2.2857   4.2406   0.7788   5.4436
#> 189   0.0035   2.2752   4.0131   0.7234   5.2531
#> 190   0.0000   0.0105   0.1037   0.0000   1.0286

Piped operation to get output an HTML report

If the preferred output is a report with combined charts and tables of results, the following piped operations can be performed:

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_html(
    svy = testSVY, filename = file.path(tempdir(), "ramOPreport")
  )

which results in an HTML file saved in the specified output directory that looks something like this:

Example of a RAM-OP HTML report