The RAM-OP Workflow

The RAM-OP Workflow is summarised in the diagram below.

RAM-OP workflow

The oldr package provides functions to use for all steps after data collection. These functions were developed specifically for the data structure created by the EpiData or the Open Data Kit collection tools. The data structure produced by these collection tools is shown by the dataset testSVY included in the oldr package.

testSVY
#> # A tibble: 192 × 90
#>      ad2   psu    hh    id    d1    d2    d3    d4    d5    f1   f2a   f2b   f2c
#>    <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1     1   201     1     1     1    67     2     5     2     3     2     1     1
#>  2     1   201     2     1     1    74     1     2     2     3     2     1     1
#>  3     1   201     3     1     1    60     1     2     2     2     2     2     2
#>  4     1   201     3     2     1    60     2     2     2     3     2     2     1
#>  5     1   201     4     1     1    85     2     5     2     3     2     1     1
#>  6     1   201     5     1     2    86     1     5     1     4     2     1     1
#>  7     1   201     6     1     1    80     1     5     2     3     2     1     1
#>  8     1   201     6     2     1    60     2     5     2     3     2     2     1
#>  9     1   201     7     1     1    62     1     2     2     2     2     1     1
#> 10     1   201     8     1     1    72     2     5     2     2     2     1     1
#> # ℹ 182 more rows
#> # ℹ 77 more variables: f2d <int>, f2e <int>, f2f <int>, f2g <int>, f2h <int>,
#> #   f2i <int>, f2j <int>, f2k <int>, f2l <int>, f2m <int>, f2n <int>,
#> #   f2o <int>, f2p <int>, f2q <int>, f2r <int>, f2s <int>, f3 <int>, f4 <int>,
#> #   f5 <int>, f6 <int>, f7 <int>, a1 <int>, a2 <int>, a3 <int>, a4 <int>,
#> #   a5 <int>, a6 <int>, a7 <int>, a8 <int>, k6a <int>, k6b <int>, k6c <int>,
#> #   k6d <int>, k6e <int>, k6f <int>, ds1 <int>, ds2 <int>, ds3 <int>, …

Processing and recoding data

Once RAM-OP data is collected, it will need to be processed and recoded based on the definitions of the various indicators included in RAM-OP. The oldr package provides a suite functions to perform this processing and recoding. These functions and their syntax can be easily remembered as the create_op_ functions as their function names start with the create_ verb followed by the op_ label and then followed by an indicator or indicator set specific identifier or short name. Finally, an additional tag for male or female can be added to the main function to provide gender-specific outputs.

Currently, a standard RAM-OP can provide results for the 13 indicators or indicator sets for older people. The following table shows these indicators/indicator sets alongside the functions related to them:

Indicator / Indicator Set Related Functions
Demography and situation create_op_demo; create_op_demo_males; create_op_demo_females
Food intake create_op_food; create_op_food_males; create_op_food_females
Severe food insecurity create_op_hunger; create_op_hunger_males; create_op_hunger_females
Disability create_op_disability; create_op_disability_males; create_op_disability_females
Activities of daily living create_op_adl; create_op_adl_males; create_op_adl_females
Mental health and well-being create_op_mental; create_op_mental_males; create_op_mental_females
Dementia create_op_dementia; create_op_dementia_males; create_op_dementia_females
Health and health-seeking behaviour create_op_health; create_op_health_males; create_op_health_females
Sources of income create_op_income; create_op_income_males; create_op_income_females
Water, sanitation, and hygiene create_op_wash; create_op_wash_males; create_op_wash_females
Anthropometry and anthropometric screening coverage create_op_anthro; create_op_anthro_males; create_op_anthro_females
Visual impairment create_op_visual; create_op_visual_males; create_op_visual_females
Miscellaneous create_op_misc; create_op_misc_males; create_op_misc_females

A final function in the processing and recoding set - create_op - is provided to perform the processing and recoding of all indicators or indicator sets. This function allows for the specification of which indicators or indicator sets to process and recode which is useful for cases where not all the indicators or indicator sets have been collected or if only specific indicators or indicator sets need to be analysed or reported. This function also specifies whether a specific gender subset of the data is needed.

For a standard RAM-OP implementation, this step is performed in R as follows:

## Process and recode all standard RAM-OP indicators in the testSVY dataset
create_op(svy = testSVY)

which results in the following output:

#> # A tibble: 192 × 138
#>      psu  sex1  sex2 resp1 resp2 resp3 resp4   age ageGrp1 ageGrp2 ageGrp3
#>    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>   <dbl>   <dbl>   <dbl>
#>  1   201     0     1     1     0     0     0    67       0       1       0
#>  2   201     1     0     1     0     0     0    74       0       0       1
#>  3   201     1     0     1     0     0     0    60       0       1       0
#>  4   201     0     1     1     0     0     0    60       0       1       0
#>  5   201     0     1     1     0     0     0    85       0       0       0
#>  6   201     1     0     0     1     0     0    86       0       0       0
#>  7   201     1     0     1     0     0     0    80       0       0       0
#>  8   201     0     1     1     0     0     0    60       0       1       0
#>  9   201     1     0     1     0     0     0    62       0       1       0
#> 10   201     0     1     1     0     0     0    72       0       0       1
#> # ℹ 182 more rows
#> # ℹ 127 more variables: ageGrp4 <dbl>, ageGrp5 <dbl>, marital1 <dbl>,
#> #   marital2 <dbl>, marital3 <dbl>, marital4 <dbl>, marital5 <dbl>,
#> #   marital6 <dbl>, alone <dbl>, MF <dbl>, DDS <dbl>, FG01 <dbl>, FG02 <dbl>,
#> #   FG03 <dbl>, FG04 <dbl>, FG05 <dbl>, FG06 <dbl>, FG07 <dbl>, FG08 <dbl>,
#> #   FG09 <dbl>, FG10 <dbl>, FG11 <dbl>, proteinRich <dbl>, pProtein <dbl>,
#> #   aProtein <dbl>, pVitA <dbl>, aVitA <dbl>, xVitA <dbl>, ironRich <dbl>, …

Estimating indicators

Once data has been processed and appropriate recoding for indicators has been performed, indicator estimates can now be calculated.

It is important to note that estimation procedures need to account for the sample design. All major statistical analysis software can do this (details vary). There are two things to note:

  • The RAM-OP sample is a two-stage sample. Subjects are sampled from a small number of primary sampling units (PSUs).

  • The RAM-OP sample is not prior weighted. This means that per-PSU sampling weights are needed. These are usually the populations of the PSU.

This sample design will need to be specified to statistical analysis software being used. If no weights are provided, then the analysis may produce estimates that place undue weight to observations from smaller communities with confidence intervals with lower than nominal coverage (i.e. they will be too narrow).

Blocked weighted bootstrap

The oldr package uses blocked weighted bootstrap estimation approach:

  • Blocked : The block corresponds to the PSU or cluster.

  • Weighted : The RAM-OP sampling procedure does not use population proportional sampling to weight the sample prior to data collection as is done with SMART type surveys. This means that a posterior weighting procedure is required. The standard RAM-OP software uses a “roulette wheel” algorithm to weight (i.e. by population) the selection probability of PSUs in bootstrap replicates.

A total of m PSUs are sampled with-replacement from the survey dataset where m is the number of PSUs in the survey sample. Individual records within each PSU are then sampled with-replacement. A total of n records are sampled with-replacement from each of the selected PSUs where n is the number of individual records in a selected PSU. The resulting collection of records replicates the original survey in terms of both sample design and sample size. A large number of replicate surveys are taken (the standard RAM-OP software uses r = 399 replicate surveys but this can be changed). The required statistic (e.g. the mean of an indicator value) is applied to each replicate survey. The reported estimate consists of the 50th (point estimate), 2.5th (lower 95% confidence limit), and the 97.5th (upper 95% confidence limit) percentiles of the distribution of the statistic observed across all replicate surveys. The blocked weighted bootstrap procedure is outlined in the figure below.

Blocked weighted bootstrap

The principal advantages of using a bootstrap estimator are:

  • Bootstrap estimators work well with small sample sizes.

  • The method is non-parametric and uses empirical rather than theoretical distributions. There are no assumptions of things like normality to worry about.

  • The method allows estimation of the sampling distribution of almost any statistic using only simple computational methods.

PROBIT estimator

The prevalence of GAM, MAM, and SAM are estimated using a PROBIT estimator. This type of estimator provides better precision than a classic estimator at small sample sizes as discussed in the following literature:

World Health Organisation, Physical Status: The use and interpretation of anthropometry. Report of a WHO expert committee, WHO Technical Report Series 854, WHO, Geneva, 1995

Dale NM, Myatt M, Prudhon C, Briend, A, “Assessment of the PROBIT approach for estimating the prevalence of global, moderate and severe acute malnutrition from population surveys”, Public Health Nutrition, 1–6. https://doi.org/10.1017/s1368980012003345, 2012

Blanton CJ, Bilukha, OO, “The PROBIT approach in estimating the prevalence of wasting: revisiting bias and precision”, Emerging Themes in Epidemiology, 10(1), 2013, p. 8

An estimate of GAM prevalence can be made using a classic estimator:

$$ \text{prevalence} ~ = ~ \frac{\text{Number of respondents with MUAC < 210}}{\text{Total number of respondents}} $$

On the other hand, the estimate of GAM prevalence made from the RAM-OP survey data is made using a PROBIT estimator. The PROBIT function is also known as the inverse cumulative distribution function. This function converts parameters of the distribution of an indicator (e.g. the mean and standard deviation of a normally distributed variable) into cumulative percentiles. This means that it is possible to use the normal PROBIT function with estimates of the mean and standard deviation of indicator values in a survey sample to predict (or estimate) the proportion of the population falling below a given threshold. For example, for data with a mean MUAC of 256 mm and a standard deviation of 28 mm the output of the normal PROBIT function for a threshold of 210 mm is 0.0502 meaning that 5.02% of the population are predicted (or estimated) to fall below the 210 mm threshold.

Both the classic and the PROBIT methods can be thought of as estimating area:

RAM-OP estimators

The principal advantage of the PROBIT approach is that the required sample size is usually smaller than that required to estimate prevalence with a given precision using the classic method.

The PROBIT method assumes that MUAC is a normally distributed variable. If this is not the case then the distribution of MUAC is transformed towards normality.

The prevalence of SAM is estimated in a similar way to GAM. The prevalence of MAM is estimated as the difference between the GAM and SAM prevalence estimates:

$$ \widehat{\text{GAM prevalence}} ~ = ~ \widehat{\text{GAM prevalence}} - \widehat{\text{SAM prevalence}} $$

Classic estimator

The function estimateClassic in oldr implements the blocked weighted bootstrap classic estimator of RAM-OP. This function uses the bootClassic statistic to estimate indicator values.

The estimateClassic function is used for all the standard RAM-OP indicators except for anthropometry. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform classic estimation on recoded data using appropriate weights provided by testPSU
classicDF <- estimate_classic(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 136 × 10
#>    INDICATOR  EST.ALL  LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>    <chr>        <dbl>    <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#>  1 resp1      0.849    0.795    0.879     0.836    0.717      0.885       0.843 
#>  2 resp2      0.104    0.0781   0.149     0.0685   0.0214     0.143       0.101 
#>  3 resp3      0.0417   0.00937  0.0521    0.0588   0.0185     0.140       0.0252
#>  4 resp4      0.00521  0        0.025     0.0233   0          0.0835      0     
#>  5 age       70.8     69.4     71.6      71.6     68.0       72.5        71.3   
#>  6 ageGrp1    0        0        0         0        0          0           0     
#>  7 ageGrp2    0.536    0.483    0.601     0.493    0.429      0.701       0.504 
#>  8 ageGrp3    0.224    0.175    0.285     0.259    0.134      0.297       0.257 
#>  9 ageGrp4    0.193    0.152    0.252     0.167    0.0877     0.262       0.2   
#> 10 ageGrp5    0.0417   0.0219   0.0729    0.05     0.00563    0.128       0.0175
#> # ℹ 126 more rows
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

PROBIT estimator

The function estimateProbit in oldr implements the blocked weighted bootstrap PROBIT estimator of RAM-OP. This function uses the probit_GAM and the probit_SAM statistic to estimate indicator values.

The estimateProbit function is used for only the anthropometric indicators. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform probit estimation on recoded data using appropriate weights provided by testPSU
probitDF <- estimate_probit(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 3 × 10
#>   INDICATOR   EST.ALL  LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>   <chr>         <dbl>    <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#> 1 GAM       0.0263     1.58e-3 0.0494   5.63e- 3  7.73e- 4  0.0248       0.0310 
#> 2 MAM       0.0263     1.53e-3 0.0466   5.63e- 3  7.54e- 4  0.0248       0.0303 
#> 3 SAM       0.0000706  3.09e-7 0.00282  1.19e-11  1.17e-13  0.000138     0.00132
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

The two sets of estimates are then merged using the merge_op function as follows:

## Merge classicDF and probitDF
resultsDF <- merge_op(x = classicDF, y = probitDF)

resultsDF

which results in:

#> # A tibble: 139 × 13
#>    INDICATOR GROUP       LABEL TYPE  EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES
#>    <fct>     <fct>       <fct> <fct>   <dbl>   <dbl>   <dbl>     <dbl>     <dbl>
#>  1 resp1     Survey      Resp… Prop… 8.49e-1 7.95e-1  0.879     0.836    0.717  
#>  2 resp2     Survey      Resp… Prop… 1.04e-1 7.81e-2  0.149     0.0685   0.0214 
#>  3 resp3     Survey      Resp… Prop… 4.17e-2 9.37e-3  0.0521    0.0588   0.0185 
#>  4 resp4     Survey      Resp… Prop… 5.21e-3 0        0.025     0.0233   0      
#>  5 age       Demography… Mean… Mean  7.08e+1 6.94e+1 71.6      71.6     68.0    
#>  6 ageGrp1   Demography… Self… Prop… 0       0        0         0        0      
#>  7 ageGrp2   Demography… Self… Prop… 5.36e-1 4.83e-1  0.601     0.493    0.429  
#>  8 ageGrp3   Demography… Self… Prop… 2.24e-1 1.75e-1  0.285     0.259    0.134  
#>  9 ageGrp4   Demography… Self… Prop… 1.93e-1 1.52e-1  0.252     0.167    0.0877 
#> 10 ageGrp5   Demography… Self… Prop… 4.17e-2 2.19e-2  0.0729    0.05     0.00563
#> # ℹ 129 more rows
#> # ℹ 4 more variables: UCL.MALES <dbl>, EST.FEMALES <dbl>, LCL.FEMALES <dbl>,
#> #   UCL.FEMALES <dbl>

Creating charts

Once indicators has been estimated, the outputs can then be used to create relevant charts to visualise the results. A set of functions that start with the verb chart_op_ is provided followed by the indicator identifier to specify the type of indicator to visualise. The output of the function is a PNG file saved in the specified filename appended to the indicator identifier within the current working directory or saved in the specified filename appended to the indicator identifier in the specified directory path.

The following shows how to produce the chart for ADLs saved with filename test appended at the start inside a temporary directory:

chart_op_adl(x = create_op(testSVY), filename = file.path(tempdir(), "test"))
#> png 
#>   2

The resulting PNG file can be found in the temporary directory

file.exists(path = file.path(tempdir(), "test.png"))
#> [1] FALSE

and will look something like this:

RAM-OP chart showing information on activities of daily living

Reporting estimates

Finally, estimates can be reported through report tables. The report_op_table function facilitates this through the following syntax:

report_op_table(estimates = resultsDF, filename = file.path(tempdir(), "TEST"))

The resulting CSV file is found in the temporary directory

file.exists(path = file.path(tempdir(), "TEST.csv"))
#> [1] FALSE

and will look something like this:

#>                                                                         X  X.1
#> 1                                                                  Survey     
#> 2                                                                             
#> 3                                                               INDICATOR TYPE
#> 4                                                    Respondent : SUBJECT    2
#> 5                                               Respondent : FAMILY CARER    2
#> 6                                                Respondent : OTHER CARER    2
#> 7                                                      Respondent : OTHER    2
#> 8                                                                             
#> 9                                                Demography and situation     
#> 10                                                                            
#> 11                                                              INDICATOR TYPE
#> 12                              Mean self-reported age of subject (years)    1
#> 13                              Self-reported age between 50 and 59 years    2
#> 14                              Self-reported age between 60 and 69 years    2
#> 15                              Self-reported age between 70 and 79 years    2
#> 16                              Self-reported age between 80 and 89 years    2
#> 17                                    Self-reported age 90 years or older    2
#> 18                                                             Sex : MALE    2
#> 19                                                           Sex : FEMALE    2
#> 20                                Marital status : SINGLE (NEVER MARRIED)    2
#> 21                                               Marital status : MARRIED    2
#> 22                                       Marital status : LIVING TOGETHER    2
#> 23                                              Marital status : DIVORCED    2
#> 24                                               Marital status : WIDOWED    2
#> 25                                                 Marital status : OTHER    2
#> 26                                                    Subject lives alone    2
#> 27                                                                            
#> 28                                                                   Diet     
#> 29                                                                            
#> 30                                                              INDICATOR TYPE
#> 31  Meal frequency (i.e. number of meals and snacks in previous 24 hours)    1
#> 32                          Dietary diversity (count from 11 food groups)    1
#> 33                                Consumed CEREALS (in previous 24 hours)    2
#> 34                         Consumed ROOTS / TUBERS (in previous 24 hours)    2
#> 35                    Consumed FRUITS / VEGETABLES (in previous 24 hours)    2
#> 36                                   Consumed MEAT (in previous 24 hours)    2
#> 37                                   Consumed EGGS (in previous 24 hours)    2
#> 38                                   Consumed FISH (in previous 24 hours)    2
#> 39                 Consumed LEGUMES / NUTS / SEEDS (in previous 24 hours)    2
#> 40                   Consumed MILK / MILK PRODUCTS (in previous 24 hours)    2
#> 41                                   Consumed FATS (in previous 24 hours)    2
#> 42                                 Consumed SUGARS (in previous 24 hours)    2
#> 43                                  Consumed OTHER (in previous 24 hours)    2
#> 44                                                                            
#> 45                                                              Nutrients     
#> 46                                                                            
#> 47                                                              INDICATOR TYPE
#> 48                                             PROTEIN rich foods in diet    2
#> 49                          Protein rich plant sources of protein in diet    2
#> 50                         Protein rich animal sources of protein in diet    2
#> 51                                     Plant sources of Vitamin A in diet    2
#> 52                                    Animal sources of Vitamin A in diet    2
#> 53                                                Any source of Vitamin A    2
#> 54                                                IRON rich foods in diet    2
#> 55                                             CALCIUM rich foods in diet    2
#> 56                                                ZINC rich foods in diet    2
#> 57                                          Vitamin B1 rich foods in diet    2
#> 58                                          Vitamin B2 rich foods in diet    2
#> 59                                          Vitamin B3 rich foods in diet    2
#> 60                                          Vitamin B6 rich foods in diet    2
#> 61                                         Vitamin B12 rich foods in diet    2
#> 62                     Vitamin B1 / B2 / B3 / B6 / B12 rich foods in diet    2
#> 63                                                                            
#> 64                                                          Food Security     
#> 65                                                                            
#> 66                                                              INDICATOR TYPE
#> 67                         Little or no hunger in household (HHS = 0 / 1)    2
#> 68                             Moderate hunger in household (HHS = 2 / 3)    2
#> 69                           Severe hunger in household (HHS = 4 / 5 / 6)    2
#> 70                                                                            
#> 71                                                        Disability (WG)     
#> 72                                                                            
#> 73                                                              INDICATOR TYPE
#> 74                                                     Vision : D0 : None    2
#> 75                                                      Vision : D1 : Any    2
#> 76                                       Vision : D2 : Moderate or severe    2
#> 77                                                   Vision : D3:  Severe    2
#> 78                                                    Hearing : D0 : None    2
#> 79                                                     Hearing : D1 : Any    2
#> 80                                      Hearing : D2 : Moderate or severe    2
#> 81                                                  Hearing : D3:  Severe    2
#> 82                                                   Mobility : D0 : None    2
#> 83                                                    Mobility : D1 : Any    2
#> 84                                     Mobility : D2 : Moderate or severe    2
#> 85                                                 Mobility : D3:  Severe    2
#> 86                                                Remembering : D0 : None    2
#> 87                                                 Remembering : D1 : Any    2
#> 88                                  Remembering : D2 : Moderate or severe    2
#> 89                                              Remembering : D3:  Severe    2
#> 90                                                  Self-care : D0 : None    2
#> 91                                                   Self-care : D1 : Any    2
#> 92                                    Self-care : D2 : Moderate or severe    2
#> 93                                                Self-care : D3:  Severe    2
#> 94                                              Communicating : D0 : None    2
#> 95                                               Communicating : D1 : Any    2
#> 96                                Communicating : D2 : Moderate or severe    2
#> 97                                            Communicating : D3:  Severe    2
#> 98                              No disability in Washington Group domains    2
#> 99                             At least 1 domain with any disability (P1)    2
#> 100             At least 1 domain with moderate or severe disability (P2)    2
#> 101                         At least 1 domain with severe disability (P3)    2
#> 102   Multiple disability : More than one domain with any disability (PM)    2
#> 103                                                                           
#> 104                                            Activities of daily living     
#> 105                                                                           
#> 106                                                             INDICATOR TYPE
#> 107                                                 Independent : Bathing    2
#> 108                                                Independent : Dressing    2
#> 109                                               Independent : Toileting    2
#> 110                                 Independent : Transferring (mobility)    2
#> 111                                              Independent : Continence    2
#> 112                                                 Independent : Feeding    2
#> 113                                                        Katz ADL score    1
#> 114                                    Independent (Katz ADL score = 5/6)    2
#> 115                             Partial dependency (Katz ADL score = 3/4)    2
#> 116                            Severe dependency (Katz ADL score = 0/1/2)    2
#> 117      Subject has someone to help them with activities of daily living    2
#> 118                     Subject has ADL needs (ADL < 6) but has no helper    2
#> 119                                                                           
#> 120                                                         Mental health     
#> 121                                                                           
#> 122                                                             INDICATOR TYPE
#> 123                                       K6 psychological distress score    1
#> 124                              Serious psychological distress (K6 > 12)    2
#> 125                                Probable dementia by brief CSID screen    2
#> 126                                                                           
#> 127                                                                Health     
#> 128                                                                           
#> 129                                                             INDICATOR TYPE
#> 130                        Long term disease requiring regular medication    2
#> 131   Takes medication for long term disease requiring regular medication    2
#> 132           Not taking drugs for long term disease : NO DRUGS AVAILABLE    2
#> 133     Not taking drugs for long term disease : TOO EXPENSIVE / NO MONEY    2
#> 134     Not taking drugs for long term disease : TOO OLD TO LOOK FOR CARE    2
#> 135  Not taking drugs for long term disease : USE OF TRADITIONAL MEDICINE    2
#> 136             Not taking drugs for long term disease : DRUGS DON'T HELP    2
#> 137            Not taking drugs for long term disease : NO-ONE TO HELP ME    2
#> 138                      Not taking drugs for long term disease : NO NEED    2
#> 139                        Not taking drugs for long term disease : OTHER    2
#> 140              Not taking drugs for long term disease : NO REASON GIVEN    2
#> 141                         Recent illness (i.e. in the previous 2 weeks)    2
#> 142                                      Accessed care for recent illness    2
#> 143            Not accessing care for recent illness : NO DRUGS AVAILABLE    2
#> 144      Not accessing care for recent illness : TOO EXPENSIVE / NO MONEY    2
#> 145      Not accessing care for recent illness : TOO OLD TO LOOK FOR CARE    2
#> 146   Not accessing care for recent illness : USE OF TRADITIONAL MEDICINE    2
#> 147              Not accessing care for recent illness : DRUGS DON'T HELP    2
#> 148             Not accessing care for recent illness : NO-ONE TO HELP ME    2
#> 149                       Not accessing care for recent illness : NO NEED    2
#> 150                         Not accessing care for recent illness : OTHER    2
#> 151               Not accessing care for recent illness : NO REASON GIVEN    2
#> 152                     Bilateral pitting oedema (may not be nutritional)    2
#> 153       Visual impairment (visual acuity < 6 / 12) by tumbling E method    2
#> 154                                   Problems chewing food (self-report)    2
#> 155                                                                           
#> 156                                                                Income     
#> 157                                                                           
#> 158                                                             INDICATOR TYPE
#> 159                                       Has a personal source of income    2
#> 160                  Source of income : Agriculture / fishing / livestock    2
#> 161                                     Source of income : Wages / salary    2
#> 162                   Source of income : Sale of charcoal / bricks / etc.    2
#> 163                      Source of income : Trading (e.g. market or shop)    2
#> 164                                        Source of income : Investments    2
#> 165                 Source of income : Spending savings / sales of assets    2
#> 166                                            Source of income : Charity    2
#> 167          Source of income : Cash transfer / social security / welfare    2
#> 168                          Source of income : Other source(s) of income    2
#> 169                                                                           
#> 170                                                                  WASH     
#> 171                                                                           
#> 172                                                             INDICATOR TYPE
#> 173                                     Improved source of drinking water    2
#> 174                                                   Safe drinking water    2
#> 175                                          Improved sanitation facility    2
#> 176                               Improved non-shared sanitation facility    2
#> 177                                                                           
#> 178                                                                Relief     
#> 179                                                                           
#> 180                                                             INDICATOR TYPE
#> 181                                  Previously screened (MUAC or oedema)    2
#> 182                                 Anyone in household receives a ration    2
#> 183                      Received non-food relief items in previous month    2
#> 184                                                                           
#> 185                                                         Anthropometry     
#> 186                                                                           
#> 187                                                             INDICATOR TYPE
#> 188                                       Global acute malnutrition : GAM    2
#> 189                                     Moderate acute malnutrition : MAM    2
#> 190                                       Severe acute malnutrition : SAM    2
#>         X.2     X.3     X.4     X.5     X.6     X.7     X.8     X.9    X.10
#> 1                                                                          
#> 2       ALL                   MALES                 FEMALES                
#> 3       EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 4    0.8490  0.7948  0.8792  0.8356  0.7171  0.8849  0.8430  0.7856  0.9252
#> 5    0.1042  0.0781  0.1490  0.0685  0.0214  0.1425  0.1009  0.0479  0.1986
#> 6    0.0417  0.0094  0.0521  0.0588  0.0185  0.1402  0.0252  0.0035  0.0539
#> 7    0.0052  0.0000  0.0250  0.0233  0.0000  0.0835  0.0000  0.0000  0.0223
#> 8                                                                          
#> 9                                                                          
#> 10      ALL                   MALES                 FEMALES                
#> 11      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 12  70.8229 69.3740 71.5917 71.5529 68.0355 72.4697 71.3119 69.1884 72.5154
#> 13   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 14   0.5365  0.4833  0.6010  0.4930  0.4294  0.7005  0.5041  0.4358  0.5797
#> 15   0.2240  0.1750  0.2854  0.2588  0.1336  0.2969  0.2571  0.2186  0.3166
#> 16   0.1927  0.1521  0.2521  0.1667  0.0877  0.2625  0.2000  0.1434  0.2733
#> 17   0.0417  0.0219  0.0729  0.0500  0.0056  0.1278  0.0175  0.0000  0.0793
#> 18   0.4010  0.3823  0.4615  1.0000  1.0000  1.0000  0.0000  0.0000  0.0000
#> 19   0.5990  0.5385  0.6177  0.0000  0.0000  0.0000  1.0000  1.0000  1.0000
#> 20   0.0365  0.0219  0.0667  0.0250  0.0000  0.0494  0.0182  0.0017  0.0474
#> 21   0.3177  0.2437  0.3927  0.5616  0.4872  0.6336  0.1345  0.0999  0.2162
#> 22   0.1042  0.0708  0.1323  0.1529  0.0974  0.2362  0.0877  0.0384  0.1222
#> 23   0.0990  0.0354  0.1250  0.0824  0.0388  0.1233  0.0583  0.0357  0.1082
#> 24   0.4219  0.4000  0.5073  0.1549  0.0866  0.2847  0.6807  0.6086  0.7353
#> 25   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 26   0.1302  0.0906  0.1740  0.1507  0.1161  0.2123  0.1083  0.0503  0.1315
#> 27                                                                         
#> 28                                                                         
#> 29      ALL                   MALES                 FEMALES                
#> 30      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 31   2.5156  2.4000  2.6990  2.6076  2.2065  2.6978  2.5963  2.3566  2.7488
#> 32   4.5573  4.3771  4.6833  4.5634  4.1418  4.8449  4.6106  4.2988  4.8134
#> 33   0.9323  0.9031  0.9604  0.9250  0.7133  0.9605  0.9083  0.8414  0.9473
#> 34   0.5052  0.4542  0.5333  0.5316  0.3324  0.6185  0.5575  0.4689  0.6101
#> 35   0.5521  0.4802  0.6375  0.5500  0.4165  0.7201  0.6182  0.4942  0.7023
#> 36   0.0573  0.0365  0.0906  0.0256  0.0047  0.0575  0.0667  0.0340  0.1236
#> 37   0.0208  0.0010  0.0417  0.0548  0.0398  0.1064  0.0091  0.0000  0.0474
#> 38   0.3490  0.3115  0.4031  0.4177  0.3599  0.5232  0.2273  0.1554  0.3365
#> 39   0.4167  0.3458  0.4604  0.4419  0.3312  0.5178  0.4333  0.3709  0.5175
#> 40   0.0260  0.0031  0.0656  0.0000  0.0000  0.0245  0.0190  0.0086  0.0779
#> 41   0.2240  0.2094  0.2698  0.2442  0.1841  0.3557  0.1917  0.1299  0.3253
#> 42   0.5000  0.3896  0.5417  0.3882  0.2641  0.5294  0.5641  0.4613  0.7011
#> 43   0.9740  0.9583  0.9885  0.9651  0.9324  0.9976  0.9750  0.9163  1.0000
#> 44                                                                         
#> 45                                                                         
#> 46      ALL                   MALES                 FEMALES                
#> 47      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 48   0.4844  0.4021  0.5292  0.5000  0.3650  0.5499  0.4833  0.4538  0.5748
#> 49   0.4167  0.3458  0.4604  0.4419  0.3312  0.5178  0.4333  0.3709  0.5175
#> 50   0.1198  0.0635  0.1396  0.0976  0.0450  0.1519  0.1150  0.0586  0.2198
#> 51   0.5677  0.5323  0.6562  0.5732  0.4565  0.6466  0.6091  0.5515  0.7626
#> 52   0.0677  0.0125  0.0938  0.0588  0.0398  0.1081  0.0439  0.0182  0.1056
#> 53   0.6042  0.5427  0.6792  0.6026  0.4788  0.6729  0.6182  0.5853  0.7842
#> 54   0.6771  0.6312  0.7031  0.6279  0.5682  0.6924  0.6667  0.5634  0.7699
#> 55   0.0260  0.0031  0.0656  0.0000  0.0000  0.0245  0.0190  0.0086  0.0779
#> 56   0.6250  0.5938  0.6917  0.6761  0.5794  0.7661  0.5614  0.4845  0.6910
#> 57   0.6823  0.6292  0.7177  0.6962  0.6341  0.7688  0.6228  0.4976  0.7030
#> 58   0.8333  0.8010  0.8677  0.8028  0.7634  0.8367  0.8500  0.7739  0.8874
#> 59   0.6250  0.5938  0.6917  0.6761  0.5794  0.7661  0.5614  0.4845  0.6910
#> 60   0.8802  0.8354  0.9052  0.8659  0.8321  0.9535  0.8667  0.8360  0.9109
#> 61   0.4062  0.3583  0.4531  0.4872  0.3931  0.5630  0.3077  0.1906  0.3919
#> 62   0.4062  0.3563  0.4354  0.4872  0.3693  0.5507  0.3077  0.1887  0.3853
#> 63                                                                         
#> 64                                                                         
#> 65      ALL                   MALES                 FEMALES                
#> 66      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 67   0.7708  0.7271  0.8385  0.7529  0.6929  0.8548  0.7778  0.7249  0.8317
#> 68   0.1771  0.1073  0.2198  0.2000  0.1254  0.2971  0.1624  0.1076  0.2113
#> 69   0.0260  0.0062  0.0438  0.0128  0.0000  0.0594  0.0252  0.0169  0.0565
#> 70                                                                         
#> 71                                                                         
#> 72      ALL                   MALES                 FEMALES                
#> 73      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 74   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 75   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 76   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 77   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 78   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 79   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 80   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 81   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 82   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 83   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 84   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 85   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 86   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 87   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 88   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 89   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 90   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 91   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 92   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 93   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 94   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 95   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 96   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 97   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 98   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 99   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 100  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 101  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 102  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 103                                                                        
#> 104                                                                        
#> 105     ALL                   MALES                 FEMALES                
#> 106     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 107  0.9688  0.9229  0.9833  0.9625  0.8815  0.9977  1.0000  0.9638  1.0000
#> 108  0.9844  0.9583  0.9927  0.9872  0.9306  1.0000  1.0000  0.9910  1.0000
#> 109  0.9844  0.9583  0.9927  0.9872  0.9306  1.0000  1.0000  0.9910  1.0000
#> 110  0.9531  0.9167  0.9875  0.9756  0.9259  0.9977  0.9714  0.8989  1.0000
#> 111  0.7292  0.6740  0.7948  0.7765  0.7187  0.8415  0.7544  0.6182  0.8373
#> 112  0.9948  0.9760  0.9948  1.0000  0.9506  1.0000  1.0000  1.0000  1.0000
#> 113  5.6250  5.4562  5.6938  5.6795  5.3771  5.7957  5.7105  5.5582  5.8099
#> 114  0.9740  0.9187  0.9885  0.9872  0.9306  1.0000  0.9817  0.9155  1.0000
#> 115  0.0104  0.0052  0.0406  0.0000  0.0000  0.0000  0.0183  0.0000  0.0845
#> 116  0.0156  0.0062  0.0417  0.0128  0.0000  0.0694  0.0000  0.0000  0.0000
#> 117  0.5781  0.5271  0.6562  0.5349  0.4540  0.6821  0.5983  0.5075  0.6230
#> 118  0.1094  0.0635  0.1500  0.1375  0.0964  0.2029  0.0579  0.0365  0.1056
#> 119                                                                        
#> 120                                                                        
#> 121     ALL                   MALES                 FEMALES                
#> 122     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 123 12.0104 11.0906 12.9000 11.7808  9.8738 12.9251 12.3186 11.4357 13.6855
#> 124  0.4740  0.3969  0.5573  0.4872  0.3661  0.5855  0.5044  0.4356  0.5960
#> 125  0.2031  0.1625  0.2271  0.1412  0.1057  0.2377  0.2389  0.1524  0.3212
#> 126                                                                        
#> 127                                                                        
#> 128     ALL                   MALES                 FEMALES                
#> 129     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 130  0.4583  0.4042  0.4844  0.3500  0.2472  0.4573  0.4790  0.3485  0.5803
#> 131  0.7312  0.6741  0.8335  0.6562  0.5773  0.7965  0.8438  0.7579  0.8969
#> 132  0.1200  0.0000  0.5373  0.2727  0.1139  0.4889  0.0000  0.0000  0.2619
#> 133  0.5238  0.3103  0.5714  0.3333  0.0333  0.5253  0.5556  0.2100  0.7974
#> 134  0.0714  0.0000  0.2974  0.0000  0.0000  0.0000  0.1818  0.0222  0.7511
#> 135  0.0833  0.0000  0.2349  0.1250  0.0000  0.6000  0.0000  0.0000  0.0000
#> 136  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 137  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 138  0.0000  0.0000  0.0471  0.0000  0.0000  0.0000  0.0000  0.0000  0.3067
#> 139  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 140  0.0909  0.0000  0.3784  0.2222  0.0182  0.4750  0.0000  0.0000  0.4364
#> 141  0.8854  0.8448  0.9156  0.8169  0.7690  0.9032  0.8947  0.7603  0.9150
#> 142  0.8276  0.7305  0.8816  0.7536  0.6905  0.8345  0.8586  0.7859  0.9010
#> 143  0.0952  0.0000  0.3823  0.2000  0.0000  0.4706  0.0000  0.0000  0.1515
#> 144  0.9048  0.4281  0.9422  0.7143  0.4794  0.9495  0.8571  0.6424  1.0000
#> 145  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 146  0.0000  0.0000  0.1507  0.0526  0.0000  0.1835  0.0000  0.0000  0.0000
#> 147  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 148  0.0278  0.0000  0.0978  0.0000  0.0000  0.0000  0.0909  0.0000  0.3380
#> 149  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 150  0.0000  0.0000  0.0467  0.0000  0.0000  0.0000  0.0000  0.0000  0.0845
#> 151  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 152  0.0156  0.0052  0.0542  0.0000  0.0000  0.0540  0.0275  0.0123  0.0736
#> 153  0.4167  0.3115  0.5052  0.4390  0.3204  0.5226  0.3303  0.2395  0.4580
#> 154  0.2708  0.2344  0.3354  0.1977  0.1391  0.2339  0.3578  0.2755  0.4972
#> 155                                                                        
#> 156                                                                        
#> 157     ALL                   MALES                 FEMALES                
#> 158     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 159  0.5208  0.4760  0.5708  0.6860  0.5339  0.7302  0.5143  0.4880  0.5852
#> 160  0.3698  0.2865  0.4635  0.4521  0.3980  0.6002  0.2857  0.2197  0.3693
#> 161  0.0938  0.0677  0.1292  0.2439  0.1718  0.3422  0.0513  0.0000  0.0924
#> 162  0.0208  0.0156  0.0354  0.0488  0.0251  0.1064  0.0083  0.0000  0.0407
#> 163  0.0625  0.0312  0.0948  0.0137  0.0025  0.0249  0.0550  0.0192  0.1454
#> 164  0.0052  0.0000  0.0229  0.0000  0.0000  0.0000  0.0000  0.0000  0.0153
#> 165  0.0156  0.0052  0.0333  0.0375  0.0000  0.0575  0.0000  0.0000  0.0000
#> 166  0.0156  0.0010  0.0260  0.0250  0.0000  0.0698  0.0083  0.0000  0.0443
#> 167  0.3021  0.2281  0.3646  0.2907  0.1931  0.3862  0.3667  0.3032  0.4262
#> 168  0.0104  0.0000  0.0354  0.0000  0.0000  0.0128  0.0000  0.0000  0.0157
#> 169                                                                        
#> 170                                                                        
#> 171     ALL                   MALES                 FEMALES                
#> 172     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 173  0.6146  0.5802  0.7094  0.5753  0.4266  0.6375  0.6134  0.5063  0.7000
#> 174  0.7240  0.6479  0.7917  0.6164  0.5013  0.6875  0.6991  0.6210  0.8295
#> 175  0.2552  0.2458  0.3031  0.2073  0.1347  0.3146  0.2083  0.1715  0.2866
#> 176  0.2552  0.2365  0.2802  0.2073  0.1347  0.3146  0.1927  0.1518  0.2832
#> 177                                                                        
#> 178                                                                        
#> 179     ALL                   MALES                 FEMALES                
#> 180     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 181  0.0469  0.0219  0.0573  0.0250  0.0024  0.0878  0.0413  0.0036  0.0756
#> 182  0.0208  0.0104  0.0740  0.0471  0.0144  0.1194  0.0579  0.0155  0.1240
#> 183  0.0312  0.0021  0.0646  0.0253  0.0026  0.0399  0.0413  0.0053  0.0808
#> 184                                                                        
#> 185                                                                        
#> 186     ALL                   MALES                 FEMALES                
#> 187     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 188  0.0263  0.0016  0.0494  0.0056  0.0008  0.0248  0.0310  0.0224  0.0572
#> 189  0.0263  0.0015  0.0466  0.0056  0.0008  0.0248  0.0303  0.0165  0.0560
#> 190  0.0001  0.0000  0.0028  0.0000  0.0000  0.0001  0.0013  0.0001  0.0084

The RAM-OP workflow in R using pipe operators

The oldr package functions were designed in such a way that they can be piped to each other to provide the desired output. Below we use the base R pipe operator |>.

Piped operation to get output estimates table

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_table(filename = file.path(tempdir(), "TEST"))

This results in a CSV file TEST.report.csv in the temporary directory

file.exists(file.path(tempdir(), "TEST.report.csv"))
#> [1] TRUE

with the following structure:

#>                                                                         X  X.1
#> 1                                                                  Survey     
#> 2                                                                             
#> 3                                                               INDICATOR TYPE
#> 4                                                    Respondent : SUBJECT    2
#> 5                                               Respondent : FAMILY CARER    2
#> 6                                                Respondent : OTHER CARER    2
#> 7                                                      Respondent : OTHER    2
#> 8                                                                             
#> 9                                                Demography and situation     
#> 10                                                                            
#> 11                                                              INDICATOR TYPE
#> 12                              Mean self-reported age of subject (years)    1
#> 13                              Self-reported age between 50 and 59 years    2
#> 14                              Self-reported age between 60 and 69 years    2
#> 15                              Self-reported age between 70 and 79 years    2
#> 16                              Self-reported age between 80 and 89 years    2
#> 17                                    Self-reported age 90 years or older    2
#> 18                                                             Sex : MALE    2
#> 19                                                           Sex : FEMALE    2
#> 20                                Marital status : SINGLE (NEVER MARRIED)    2
#> 21                                               Marital status : MARRIED    2
#> 22                                       Marital status : LIVING TOGETHER    2
#> 23                                              Marital status : DIVORCED    2
#> 24                                               Marital status : WIDOWED    2
#> 25                                                 Marital status : OTHER    2
#> 26                                                    Subject lives alone    2
#> 27                                                                            
#> 28                                                                   Diet     
#> 29                                                                            
#> 30                                                              INDICATOR TYPE
#> 31  Meal frequency (i.e. number of meals and snacks in previous 24 hours)    1
#> 32                          Dietary diversity (count from 11 food groups)    1
#> 33                                Consumed CEREALS (in previous 24 hours)    2
#> 34                         Consumed ROOTS / TUBERS (in previous 24 hours)    2
#> 35                    Consumed FRUITS / VEGETABLES (in previous 24 hours)    2
#> 36                                   Consumed MEAT (in previous 24 hours)    2
#> 37                                   Consumed EGGS (in previous 24 hours)    2
#> 38                                   Consumed FISH (in previous 24 hours)    2
#> 39                 Consumed LEGUMES / NUTS / SEEDS (in previous 24 hours)    2
#> 40                   Consumed MILK / MILK PRODUCTS (in previous 24 hours)    2
#> 41                                   Consumed FATS (in previous 24 hours)    2
#> 42                                 Consumed SUGARS (in previous 24 hours)    2
#> 43                                  Consumed OTHER (in previous 24 hours)    2
#> 44                                                                            
#> 45                                                              Nutrients     
#> 46                                                                            
#> 47                                                              INDICATOR TYPE
#> 48                                             PROTEIN rich foods in diet    2
#> 49                          Protein rich plant sources of protein in diet    2
#> 50                         Protein rich animal sources of protein in diet    2
#> 51                                     Plant sources of Vitamin A in diet    2
#> 52                                    Animal sources of Vitamin A in diet    2
#> 53                                                Any source of Vitamin A    2
#> 54                                                IRON rich foods in diet    2
#> 55                                             CALCIUM rich foods in diet    2
#> 56                                                ZINC rich foods in diet    2
#> 57                                          Vitamin B1 rich foods in diet    2
#> 58                                          Vitamin B2 rich foods in diet    2
#> 59                                          Vitamin B3 rich foods in diet    2
#> 60                                          Vitamin B6 rich foods in diet    2
#> 61                                         Vitamin B12 rich foods in diet    2
#> 62                     Vitamin B1 / B2 / B3 / B6 / B12 rich foods in diet    2
#> 63                                                                            
#> 64                                                          Food Security     
#> 65                                                                            
#> 66                                                              INDICATOR TYPE
#> 67                         Little or no hunger in household (HHS = 0 / 1)    2
#> 68                             Moderate hunger in household (HHS = 2 / 3)    2
#> 69                           Severe hunger in household (HHS = 4 / 5 / 6)    2
#> 70                                                                            
#> 71                                                        Disability (WG)     
#> 72                                                                            
#> 73                                                              INDICATOR TYPE
#> 74                                                     Vision : D0 : None    2
#> 75                                                      Vision : D1 : Any    2
#> 76                                       Vision : D2 : Moderate or severe    2
#> 77                                                   Vision : D3:  Severe    2
#> 78                                                    Hearing : D0 : None    2
#> 79                                                     Hearing : D1 : Any    2
#> 80                                      Hearing : D2 : Moderate or severe    2
#> 81                                                  Hearing : D3:  Severe    2
#> 82                                                   Mobility : D0 : None    2
#> 83                                                    Mobility : D1 : Any    2
#> 84                                     Mobility : D2 : Moderate or severe    2
#> 85                                                 Mobility : D3:  Severe    2
#> 86                                                Remembering : D0 : None    2
#> 87                                                 Remembering : D1 : Any    2
#> 88                                  Remembering : D2 : Moderate or severe    2
#> 89                                              Remembering : D3:  Severe    2
#> 90                                                  Self-care : D0 : None    2
#> 91                                                   Self-care : D1 : Any    2
#> 92                                    Self-care : D2 : Moderate or severe    2
#> 93                                                Self-care : D3:  Severe    2
#> 94                                              Communicating : D0 : None    2
#> 95                                               Communicating : D1 : Any    2
#> 96                                Communicating : D2 : Moderate or severe    2
#> 97                                            Communicating : D3:  Severe    2
#> 98                              No disability in Washington Group domains    2
#> 99                             At least 1 domain with any disability (P1)    2
#> 100             At least 1 domain with moderate or severe disability (P2)    2
#> 101                         At least 1 domain with severe disability (P3)    2
#> 102   Multiple disability : More than one domain with any disability (PM)    2
#> 103                                                                           
#> 104                                            Activities of daily living     
#> 105                                                                           
#> 106                                                             INDICATOR TYPE
#> 107                                                 Independent : Bathing    2
#> 108                                                Independent : Dressing    2
#> 109                                               Independent : Toileting    2
#> 110                                 Independent : Transferring (mobility)    2
#> 111                                              Independent : Continence    2
#> 112                                                 Independent : Feeding    2
#> 113                                                        Katz ADL score    1
#> 114                                    Independent (Katz ADL score = 5/6)    2
#> 115                             Partial dependency (Katz ADL score = 3/4)    2
#> 116                            Severe dependency (Katz ADL score = 0/1/2)    2
#> 117      Subject has someone to help them with activities of daily living    2
#> 118                     Subject has ADL needs (ADL < 6) but has no helper    2
#> 119                                                                           
#> 120                                                         Mental health     
#> 121                                                                           
#> 122                                                             INDICATOR TYPE
#> 123                                       K6 psychological distress score    1
#> 124                              Serious psychological distress (K6 > 12)    2
#> 125                                Probable dementia by brief CSID screen    2
#> 126                                                                           
#> 127                                                                Health     
#> 128                                                                           
#> 129                                                             INDICATOR TYPE
#> 130                        Long term disease requiring regular medication    2
#> 131   Takes medication for long term disease requiring regular medication    2
#> 132           Not taking drugs for long term disease : NO DRUGS AVAILABLE    2
#> 133     Not taking drugs for long term disease : TOO EXPENSIVE / NO MONEY    2
#> 134     Not taking drugs for long term disease : TOO OLD TO LOOK FOR CARE    2
#> 135  Not taking drugs for long term disease : USE OF TRADITIONAL MEDICINE    2
#> 136             Not taking drugs for long term disease : DRUGS DON'T HELP    2
#> 137            Not taking drugs for long term disease : NO-ONE TO HELP ME    2
#> 138                      Not taking drugs for long term disease : NO NEED    2
#> 139                        Not taking drugs for long term disease : OTHER    2
#> 140              Not taking drugs for long term disease : NO REASON GIVEN    2
#> 141                         Recent illness (i.e. in the previous 2 weeks)    2
#> 142                                      Accessed care for recent illness    2
#> 143            Not accessing care for recent illness : NO DRUGS AVAILABLE    2
#> 144      Not accessing care for recent illness : TOO EXPENSIVE / NO MONEY    2
#> 145      Not accessing care for recent illness : TOO OLD TO LOOK FOR CARE    2
#> 146   Not accessing care for recent illness : USE OF TRADITIONAL MEDICINE    2
#> 147              Not accessing care for recent illness : DRUGS DON'T HELP    2
#> 148             Not accessing care for recent illness : NO-ONE TO HELP ME    2
#> 149                       Not accessing care for recent illness : NO NEED    2
#> 150                         Not accessing care for recent illness : OTHER    2
#> 151               Not accessing care for recent illness : NO REASON GIVEN    2
#> 152                     Bilateral pitting oedema (may not be nutritional)    2
#> 153       Visual impairment (visual acuity < 6 / 12) by tumbling E method    2
#> 154                                   Problems chewing food (self-report)    2
#> 155                                                                           
#> 156                                                                Income     
#> 157                                                                           
#> 158                                                             INDICATOR TYPE
#> 159                                       Has a personal source of income    2
#> 160                  Source of income : Agriculture / fishing / livestock    2
#> 161                                     Source of income : Wages / salary    2
#> 162                   Source of income : Sale of charcoal / bricks / etc.    2
#> 163                      Source of income : Trading (e.g. market or shop)    2
#> 164                                        Source of income : Investments    2
#> 165                 Source of income : Spending savings / sales of assets    2
#> 166                                            Source of income : Charity    2
#> 167          Source of income : Cash transfer / social security / welfare    2
#> 168                          Source of income : Other source(s) of income    2
#> 169                                                                           
#> 170                                                                  WASH     
#> 171                                                                           
#> 172                                                             INDICATOR TYPE
#> 173                                     Improved source of drinking water    2
#> 174                                                   Safe drinking water    2
#> 175                                          Improved sanitation facility    2
#> 176                               Improved non-shared sanitation facility    2
#> 177                                                                           
#> 178                                                                Relief     
#> 179                                                                           
#> 180                                                             INDICATOR TYPE
#> 181                                  Previously screened (MUAC or oedema)    2
#> 182                                 Anyone in household receives a ration    2
#> 183                      Received non-food relief items in previous month    2
#> 184                                                                           
#> 185                                                         Anthropometry     
#> 186                                                                           
#> 187                                                             INDICATOR TYPE
#> 188                                       Global acute malnutrition : GAM    2
#> 189                                     Moderate acute malnutrition : MAM    2
#> 190                                       Severe acute malnutrition : SAM    2
#>          X.2      X.3      X.4      X.5      X.6      X.7      X.8      X.9
#> 1                                                                          
#> 2        ALL                      MALES                    FEMALES         
#> 3        EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 4    86.9792  81.2500  91.2500  86.8421  78.5410  91.6000  86.0656  78.8769
#> 5     8.3333   6.9792  11.7708   7.0588   4.1639  12.4441   9.0909   6.7584
#> 6     4.1667   1.1458   7.6042   5.1282   0.0000   9.0807   3.2787   1.0781
#> 7     0.5208   0.0000   2.8125   2.5000   0.0000   7.1949   0.0000   0.0000
#> 8                                                                          
#> 9                                                                          
#> 10       ALL                      MALES                    FEMALES         
#> 11       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 12   70.5469  69.3594  72.3781  70.4000  68.8506  72.1425  71.0727  68.7842
#> 13    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 14   53.6458  44.2708  60.3125  53.9474  39.0008  63.2500  51.6393  41.5437
#> 15   25.0000  17.0833  26.0417  26.5060  19.7895  38.2143  22.1311  15.2189
#> 16   18.2292  12.7083  26.4583  12.0482  10.3228  21.5342  19.0083  12.2918
#> 17    4.1667   1.5625   6.3542   5.0000   2.8977   9.9211   4.1322   1.0781
#> 18   40.6250  32.9167  47.7083 100.0000 100.0000 100.0000   0.0000   0.0000
#> 19   59.3750  52.2917  67.0833   0.0000   0.0000   0.0000 100.0000 100.0000
#> 20    3.6458   1.6667   6.3542   0.0000   0.0000   4.3127   6.0870   1.9630
#> 21   30.2083  26.3542  33.2292  52.5641  46.6579  61.8824  16.5289   9.5115
#> 22   11.4583   8.3333  15.6250  18.7500   8.9412  30.2632   7.0175   4.7285
#> 23    6.2500   4.8958  11.5625   8.9744   1.8026  13.4859   5.9322   1.8775
#> 24   48.9583  41.6667  50.9375  18.4211  12.0784  22.2659  65.2542  55.1680
#> 25    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 26   14.0625   6.6667  18.7500  15.0000  10.9247  19.2202  12.7119   7.3685
#> 27                                                                         
#> 28                                                                         
#> 29       ALL                      MALES                    FEMALES         
#> 30       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 31    2.6198   2.4521   2.7198   2.5733   2.3005   2.7433   2.5868   2.4775
#> 32    4.5260   4.4542   4.6760   4.4487   3.9843   4.8542   4.7787   4.5527
#> 33   91.6667  87.1875  94.6875  92.9412  84.2056  95.6731  92.1053  87.8425
#> 34   52.0833  48.0208  57.0833  46.5753  38.5263  64.2721  55.9322  53.0519
#> 35   58.3333  49.7917  62.6042  51.7647  48.9744  61.4233  64.4068  55.1392
#> 36    4.6875   2.7083   6.2500   3.7500   1.1976   7.9235   6.0870   3.6119
#> 37    2.6042   1.5625   5.4167   4.0000   1.2564   8.8873   0.8264   0.0000
#> 38   31.7708  26.8750  35.3125  42.1687  29.5025  50.2769  29.4643  21.7425
#> 39   44.2708  38.7500  47.6042  39.7590  27.8762  49.3961  42.9825  34.0507
#> 40    2.6042   0.7292   5.1042   0.0000   0.0000   1.0000   4.7170   1.2043
#> 41   20.8333  17.2917  27.2917  25.0000  14.5123  29.7718  21.4876  14.9680
#> 42   48.9583  40.7292  58.5417  43.4211  31.1154  50.7609  60.1695  49.5695
#> 43   96.8750  93.8542  99.8958  96.0000  92.1842 100.0000  98.1818  93.0576
#> 44                                                                         
#> 45                                                                         
#> 46       ALL                      MALES                    FEMALES         
#> 47       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 48   47.9167  46.3542  51.7708  44.8718  31.7399  54.9020  52.5424  46.7427
#> 49   44.2708  38.7500  47.6042  39.7590  27.8762  49.3961  42.9825  34.0507
#> 50    9.3750   8.9583  13.2292   6.2500   2.8408  16.8108  13.2075   8.0660
#> 51   59.8958  53.7500  62.5000  55.2632  49.7021  61.8852  67.2131  59.4582
#> 52    5.7292   3.7500   7.7083   4.0000   1.2888   8.8873   6.1404   1.5254
#> 53   61.9792  56.0417  67.3958  55.2941  53.9589  66.7045  70.4918  61.4921
#> 54   64.0625  60.1042  68.7500  56.5789  52.3707  68.5611  72.7273  61.6707
#> 55    2.6042   0.7292   5.1042   0.0000   0.0000   1.0000   4.7170   1.2043
#> 56   60.9375  58.0208  65.4167  65.7534  50.1300  77.3176  58.6777  50.7143
#> 57   65.6250  61.0417  70.5208  66.2500  54.8553  77.3176  65.7895  57.0408
#> 58   81.7708  80.3125  84.7917  79.4521  67.6842  80.9412  83.6364  78.7249
#> 59   60.9375  58.0208  65.4167  65.7534  50.1300  77.3176  58.6777  50.7143
#> 60   86.4583  84.0625  89.1667  87.0588  79.4079  90.6510  86.3636  81.2712
#> 61   38.0208  33.4375  41.5625  47.0588  32.9605  53.0281  31.8182  23.8771
#> 62   36.4583  32.2917  40.7292  47.0588  31.8638  52.7871  31.8182  23.5775
#> 63                                                                         
#> 64                                                                         
#> 65       ALL                      MALES                    FEMALES         
#> 66       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 67   80.2083  73.2292  83.2292  74.6988  61.7500  83.6351  76.0331  67.4901
#> 68   15.6250  12.5000  18.3333  18.7500  10.8978  35.8676  18.1818   7.6044
#> 69    3.1250   0.7292   5.1042   1.3158   0.0000   7.7518   3.3058   0.0000
#> 70                                                                         
#> 71                                                                         
#> 72       ALL                      MALES                    FEMALES         
#> 73       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 74  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 75    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 76    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 77    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 78  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 79    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 80    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 81    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 82  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 83    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 84    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 85    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 86  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 87    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 88    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 89    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 90  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 91    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 92    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 93    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 94  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 95    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 96    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 97    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 98  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 99    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 100   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 101   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 102   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 103                                                                        
#> 104                                                                        
#> 105      ALL                      MALES                    FEMALES         
#> 106      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 107  96.8750  93.5417  97.8125  95.0000  89.4829  97.1608  98.3051  95.9666
#> 108  98.4375  96.2500  98.9583  96.4706  90.8288  99.7647  99.1525  98.1627
#> 109  98.4375  96.2500  98.9583  96.4706  90.8288  99.7647  99.1525  98.1627
#> 110  96.3542  90.6250  98.3333  96.3855  90.5788  98.4627  97.5410  91.8570
#> 111  72.9167  67.8125  80.5208  78.3133  72.6704  86.3971  71.0526  65.5300
#> 112  99.4792  98.0208 100.0000 100.0000  92.9541 100.0000 100.0000 100.0000
#> 113   5.5833   5.4896   5.7365   5.6053   5.2998   5.7705   5.6518   5.5316
#> 114  95.8333  93.7500  98.8542  96.4706  90.8288  99.7647  98.1132  95.8438
#> 115   1.5625   0.0000   4.1667   0.0000   0.0000   0.0000   1.8868   0.0000
#> 116   1.0417   0.6250   2.9167   3.5294   0.2353   9.1712   0.0000   0.0000
#> 117  58.8542  54.5833  65.5208  55.0000  42.8297  63.1312  63.6364  54.4070
#> 118  10.4167   4.0625  13.8542  13.1579   7.3338  21.0508   7.0175   3.0744
#> 119                                                                        
#> 120                                                                        
#> 121      ALL                      MALES                    FEMALES         
#> 122      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 123  12.3802  11.4354  13.5885  10.8875   9.6472  12.4736  11.8182  10.7346
#> 124  50.0000  43.0208  58.5417  41.0959  32.5897  56.2196  44.0678  42.7769
#> 125  21.3542  16.4583  26.3542  13.6986   5.2500  23.7477  19.4915  18.1818
#> 126                                                                        
#> 127                                                                        
#> 128      ALL                      MALES                    FEMALES         
#> 129      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 130  46.8750  41.1458  55.1042  36.0000  30.1176  49.5479  50.0000  46.1258
#> 131  76.6667  69.3671  82.5823  70.8333  55.6484  81.4014  76.2712  65.1128
#> 132  15.0000   0.9524  42.0000  11.1111   0.0000  38.0000   7.1429   0.0000
#> 133  40.0000  16.0000  52.3048  40.0000  10.8571  73.6508  45.0000  17.6190
#> 134   5.0000   0.0000  33.0000   0.0000   0.0000   0.0000  13.3333   0.0000
#> 135  10.0000   0.9524  23.0476  23.0769   0.0000  48.8889   0.0000   0.0000
#> 136   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 137   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 138   0.0000   0.0000   9.1005   0.0000   0.0000   0.0000   0.0000   0.0000
#> 139   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 140  19.0476   2.0000  39.7403  20.0000   0.0000  42.8571  21.4286   0.0000
#> 141  88.0208  80.5208  91.8750  82.5000  78.5480  93.3664  83.8983  80.4959
#> 142  79.8817  77.2955  89.2944  75.0000  68.5935  83.9276  85.5556  79.1871
#> 143   6.8966   2.8918  18.8846   9.5238   0.0000  25.3333   5.2632   0.0000
#> 144  82.7586  54.9288  95.8111  85.7143  63.3333 100.0000  90.9091  63.3333
#> 145   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 146   6.2500   0.0000  17.6720   5.0000   0.0000  17.1053   0.0000   0.0000
#> 147   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 148   0.0000   0.0000   7.6353   0.0000   0.0000   0.0000   0.0000   0.0000
#> 149   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 150   0.0000   0.0000   7.2967   0.0000   0.0000   0.0000   0.0000   0.0000
#> 151   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 152   2.6042   0.7292   5.2083   1.2821   0.0000   2.6039   1.7391   0.8836
#> 153  38.0208  30.9375  45.9375  50.6024  36.7333  57.7438  32.2034  23.1802
#> 154  29.6875  24.5833  34.4792  22.8916  18.6980  36.4737  31.3043  23.5971
#> 155                                                                        
#> 156                                                                        
#> 157      ALL                      MALES                    FEMALES         
#> 158      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 159  55.7292  44.4792  63.6458  61.5385  46.7895  68.6471  51.7857  49.0973
#> 160  39.5833  27.9167  43.8542  47.4359  35.0658  56.4706  27.9661  23.0032
#> 161  11.4583   9.0625  17.5000  22.5000   9.8111  33.2851   2.6087   1.6732
#> 162   2.0833   0.6250   3.5417   6.8493   1.7331   9.8824   0.8929   0.0000
#> 163   5.2083   1.8750   9.2708   2.7397   0.0000   5.8782   4.9180   1.1997
#> 164   0.0000   0.0000   2.1875   0.0000   0.0000   0.0000   0.0000   0.0000
#> 165   1.0417   0.1042   3.1250   3.6145   1.1912  10.6471   0.0000   0.0000
#> 166   1.5625   0.5208   2.9167   2.6316   1.3406   4.7692   1.8182   0.8312
#> 167  33.3333  28.0208  39.2708  25.8824  17.6842  32.8854  35.4545  30.2666
#> 168   0.0000   0.0000   1.0417   1.3158   0.0000   2.4819   0.0000   0.0000
#> 169                                                                        
#> 170                                                                        
#> 171      ALL                      MALES                    FEMALES         
#> 172      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 173  60.9375  55.9375  65.2083  62.6506  43.1077  70.2363  63.4783  52.1106
#> 174  70.3125  63.1250  76.5625  65.8824  47.8051  74.8622  72.1739  65.6348
#> 175  22.9167  17.9167  26.7708  27.5000  22.7487  33.5882  25.4098  17.7224
#> 176  21.8750  17.0833  26.3542  26.3158  22.7487  33.5882  23.7288  15.5795
#> 177                                                                        
#> 178                                                                        
#> 179      ALL                      MALES                    FEMALES         
#> 180      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 181   3.6458   2.7083   5.2083   3.9474   0.2564   7.8253   3.6364   1.0826
#> 182   5.7292   3.2292   9.0625   3.7500   0.0000   9.9791   5.7377   0.8843
#> 183   3.1250   0.6250   6.6667   3.5294   1.2996   7.3333   4.1322   0.1754
#> 184                                                                        
#> 185                                                                        
#> 186      ALL                      MALES                    FEMALES         
#> 187      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 188   4.0197   1.0584   7.2146   0.6286   0.0224   2.4600   3.5337   0.3472
#> 189   4.0178   1.0557   7.0158   0.6285   0.0224   2.4600   3.4664   0.1183
#> 190   0.0027   0.0001   0.8394   0.0000   0.0000   0.0029   0.1990   0.0037
#>         X.10
#> 1           
#> 2           
#> 3        UCL
#> 4    90.2807
#> 5    16.6898
#> 6     4.9103
#> 7     2.8015
#> 8           
#> 9           
#> 10          
#> 11       UCL
#> 12   72.9115
#> 13    0.0000
#> 14   61.4915
#> 15   32.9194
#> 16   32.6550
#> 17    8.1226
#> 18    0.0000
#> 19  100.0000
#> 20    9.4093
#> 21   26.9853
#> 22   10.1356
#> 23    6.3409
#> 24   74.0027
#> 25    0.0000
#> 26   18.7780
#> 27          
#> 28          
#> 29          
#> 30       UCL
#> 31    2.7831
#> 32    4.9536
#> 33   97.2881
#> 34   65.7393
#> 35   69.5118
#> 36   13.7480
#> 37    4.4753
#> 38   34.3835
#> 39   51.7391
#> 40   10.1610
#> 41   32.0426
#> 42   64.6624
#> 43   99.8305
#> 44          
#> 45          
#> 46          
#> 47       UCL
#> 48   59.1321
#> 49   51.7391
#> 50   20.4785
#> 51   73.5561
#> 52   10.4114
#> 53   74.5582
#> 54   81.1290
#> 55   10.1610
#> 56   68.3527
#> 57   73.1288
#> 58   90.3139
#> 59   68.3527
#> 60   91.2945
#> 61   40.4856
#> 62   39.9311
#> 63          
#> 64          
#> 65          
#> 66       UCL
#> 67   89.0600
#> 68   24.3448
#> 69    4.2373
#> 70          
#> 71          
#> 72          
#> 73       UCL
#> 74  100.0000
#> 75    0.0000
#> 76    0.0000
#> 77    0.0000
#> 78  100.0000
#> 79    0.0000
#> 80    0.0000
#> 81    0.0000
#> 82  100.0000
#> 83    0.0000
#> 84    0.0000
#> 85    0.0000
#> 86  100.0000
#> 87    0.0000
#> 88    0.0000
#> 89    0.0000
#> 90  100.0000
#> 91    0.0000
#> 92    0.0000
#> 93    0.0000
#> 94  100.0000
#> 95    0.0000
#> 96    0.0000
#> 97    0.0000
#> 98  100.0000
#> 99    0.0000
#> 100   0.0000
#> 101   0.0000
#> 102   0.0000
#> 103         
#> 104         
#> 105         
#> 106      UCL
#> 107 100.0000
#> 108 100.0000
#> 109 100.0000
#> 110  99.8305
#> 111  82.2006
#> 112 100.0000
#> 113   5.7486
#> 114 100.0000
#> 115   4.1562
#> 116   0.0000
#> 117  75.2124
#> 118  14.1094
#> 119         
#> 120         
#> 121         
#> 122      UCL
#> 123  13.3132
#> 124  57.3315
#> 125  30.8354
#> 126         
#> 127         
#> 128         
#> 129      UCL
#> 130  53.5546
#> 131  90.1528
#> 132  23.0769
#> 133  80.0000
#> 134  49.2308
#> 135   0.0000
#> 136   0.0000
#> 137   0.0000
#> 138  36.5079
#> 139   0.0000
#> 140  33.3333
#> 141  90.7702
#> 142  89.6115
#> 143  27.8571
#> 144 100.0000
#> 145   0.0000
#> 146   0.0000
#> 147   0.0000
#> 148  28.2051
#> 149   0.0000
#> 150   7.4038
#> 151   0.0000
#> 152   4.3979
#> 153  41.2484
#> 154  43.1081
#> 155         
#> 156         
#> 157         
#> 158      UCL
#> 159  58.3996
#> 160  41.2546
#> 161   4.6827
#> 162   4.1372
#> 163   9.8207
#> 164   3.1548
#> 165   0.0000
#> 166   3.2911
#> 167  42.1126
#> 168   2.3573
#> 169         
#> 170         
#> 171         
#> 172      UCL
#> 173  67.8661
#> 174  81.2831
#> 175  36.2435
#> 176  34.1602
#> 177         
#> 178         
#> 179         
#> 180      UCL
#> 181   7.9367
#> 182   9.2131
#> 183   5.2565
#> 184         
#> 185         
#> 186         
#> 187      UCL
#> 188   9.7385
#> 189   9.5488
#> 190   0.8612

Piped operation to get output an HTML report

If the preferred output is a report with combined charts and tables of results, the following piped operations can be performed:

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_html(
    svy = testSVY, filename = file.path(tempdir(), "ramOPreport")
  )

which results in an HTML file saved in the specified output directory that looks something like this:

Example of a RAM-OP HTML report